Fish Target Detection in Underwater Blurred Scenes Based on Improved YOLOv5
In recent years, human beings have paid more and more attention to the exploration of the underwater world. As an important part of underwater resources, fish can be detected by using the fish image data collected by underwater imaging systems, which can help us better understand fish species richne...
Päätekijät: | Fei Wu, Zonghai Cai, Shengli Fan, Ruiyin Song, Lang Wang, Weiming Cai |
---|---|
Aineistotyyppi: | Artikkeli |
Kieli: | English |
Julkaistu: |
IEEE
2023-01-01
|
Sarja: | IEEE Access |
Aiheet: | |
Linkit: | https://ieeexplore.ieee.org/document/10302277/ |
Samankaltaisia teoksia
-
Underwater Object Detection Algorithm Based on an Improved YOLOv8
Tekijä: Fubin Zhang, et al.
Julkaistu: (2024-11-01) -
A Deep Learning-Based Lightweight Model for the Detection of Marine Fishes
Tekijä: Fei Wu, et al.
Julkaistu: (2023-11-01) -
In Situ Sea Cucumber Detection across Multiple Underwater Scenes Based on Convolutional Neural Networks and Image Enhancements
Tekijä: Yi Wang, et al.
Julkaistu: (2023-02-01) -
Target Detection and Image Enhancement for Underwater Environment: Research on Improving YOLOv7
Tekijä: Yang Luo, et al.
Julkaistu: (2025-01-01) -
High Inclusiveness and Accuracy Motion Blur Real-Time Gesture Recognition Based on YOLOv4 Model Combined Attention Mechanism and DeblurGanv2
Tekijä: Hongchao Zhuang, et al.
Julkaistu: (2021-10-01)