An Innovative Approach to Accuracy of Co-Seismic Surface Displacement Detection Using Satellite GNSS Technology

This paper discusses a new method for determining co-seismic displacement using the Global Navigation Satellite System (GNSS) for the precise detection of positional changes at permanent stations after an earthquake. Positioning by the Precise Point Positioning (PPP) method is undertaken using data...

Full description

Bibliographic Details
Main Authors: Hana Staňková, Jakub Kostelecký, Miroslav Novosad
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/6/2800
Description
Summary:This paper discusses a new method for determining co-seismic displacement using the Global Navigation Satellite System (GNSS) for the precise detection of positional changes at permanent stations after an earthquake. Positioning by the Precise Point Positioning (PPP) method is undertaken using data from the GNSS satellites and one designated station. A time series is processed by an anharmonic analysis before and after an earthquake and these one-day solutions increase the accuracy of measurements. The co-seismic static displacement can be precisely detected from the analysed time series before and after the earthquake, which can be used for the verification of seismic models. Reliability of the estimation of the size of the co-seismic offset is given by the mean square error (RMSE) of the shift. In this study, RMSE was determined by two approaches, initially from variances within PPP processing, and secondly when no positional change from the GNSS before or after the earthquake was assumed. The variance of the data in the time series gives a more realistic estimate of RMSE. This dual approach can affect seismological interpretation due to the need for the interpreting geophysicists to determine which case of co-seismic displacement is more probable for any given locality. The second approach has been shown to provide a more realistic co-seismic displacement accuracy in this study.
ISSN:2076-3417