Machine learning decision tree models for multiclass classification of common malignant brain tumors using perfusion and spectroscopy MRI data

BackgroundTo investigate the contribution of machine learning decision tree models applied to perfusion and spectroscopy MRI for multiclass classification of lymphomas, glioblastomas, and metastases, and then to bring out the underlying key pathophysiological processes involved in the hierarchizatio...

Full description

Bibliographic Details
Main Authors: Rodolphe Vallée, Jean-Noël Vallée, Carole Guillevin, Athéna Lallouette, Clément Thomas, Guillaume Rittano, Michel Wager, Rémy Guillevin, Alexandre Vallée
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-08-01
Series:Frontiers in Oncology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fonc.2023.1089998/full
_version_ 1827874073535840256
author Rodolphe Vallée
Rodolphe Vallée
Rodolphe Vallée
Jean-Noël Vallée
Jean-Noël Vallée
Carole Guillevin
Carole Guillevin
Athéna Lallouette
Clément Thomas
Clément Thomas
Guillaume Rittano
Michel Wager
Rémy Guillevin
Rémy Guillevin
Alexandre Vallée
author_facet Rodolphe Vallée
Rodolphe Vallée
Rodolphe Vallée
Jean-Noël Vallée
Jean-Noël Vallée
Carole Guillevin
Carole Guillevin
Athéna Lallouette
Clément Thomas
Clément Thomas
Guillaume Rittano
Michel Wager
Rémy Guillevin
Rémy Guillevin
Alexandre Vallée
author_sort Rodolphe Vallée
collection DOAJ
description BackgroundTo investigate the contribution of machine learning decision tree models applied to perfusion and spectroscopy MRI for multiclass classification of lymphomas, glioblastomas, and metastases, and then to bring out the underlying key pathophysiological processes involved in the hierarchization of the decision-making algorithms of the modelsMethodsFrom 2013 to 2020, 180 consecutive patients with histopathologically proved lymphomas (n = 77), glioblastomas (n = 45), and metastases (n = 58) were included in machine learning analysis after undergoing MRI. The perfusion parameters (rCBVmax, PSRmax) and spectroscopic concentration ratios (lac/Cr, Cho/NAA, Cho/Cr, and lip/Cr) were applied to construct Classification and Regression Tree (CART) models for multiclass classification of these brain tumors. A 5-fold random cross validation was performed on the dataset.ResultsThe decision tree model thus constructed successfully classified all 3 tumor types with a performance (AUC) of 0.98 for PCNSLs, 0.98 for GBM and 1.00 for METs. The model accuracy was 0.96 with a RSquare of 0.887. Five rules of classifier combinations were extracted with a predicted probability from 0.907 to 0.989 for that end nodes of the decision tree for tumor multiclass classification. In hierarchical order of importance, the root node (Cho/NAA) in the decision tree algorithm was primarily based on the proliferative, infiltrative, and neuronal destructive characteristics of the tumor, the internal node (PSRmax), on tumor tissue capillary permeability characteristics, and the end node (Lac/Cr or Cho/Cr), on tumor energy glycolytic (Warburg effect), or on membrane lipid tumor metabolism.ConclusionOur study shows potential implementation of machine learning decision tree model algorithms based on a hierarchical, convenient, and personalized use of perfusion and spectroscopy MRI data for multiclass classification of these brain tumors.
first_indexed 2024-03-12T16:47:06Z
format Article
id doaj.art-f4e74cdcec66455ab6dd201b50ea530b
institution Directory Open Access Journal
issn 2234-943X
language English
last_indexed 2024-03-12T16:47:06Z
publishDate 2023-08-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Oncology
spelling doaj.art-f4e74cdcec66455ab6dd201b50ea530b2023-08-08T12:09:16ZengFrontiers Media S.A.Frontiers in Oncology2234-943X2023-08-011310.3389/fonc.2023.10899981089998Machine learning decision tree models for multiclass classification of common malignant brain tumors using perfusion and spectroscopy MRI dataRodolphe Vallée0Rodolphe Vallée1Rodolphe Vallée2Jean-Noël Vallée3Jean-Noël Vallée4Carole Guillevin5Carole Guillevin6Athéna Lallouette7Clément Thomas8Clément Thomas9Guillaume Rittano10Michel Wager11Rémy Guillevin12Rémy Guillevin13Alexandre Vallée14Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology (LINP2), Université Paris Lumière (UPL), Paris Nanterre University, Nanterre, FranceLaboratory of Mathematics and Applications (LMA) Centre National de la Recherche Scientifique - Unité Mixte de Recherche (CNRS UMR)7348, i3M-DACTIM-MIH (Data Analysis and Computations Through Imaging Modeling - Mathematics, Image, Health), Poitiers University, Poitiers, FranceGlaucoma Research Center, Swiss Visio Network, Lausanne, SwitzerlandLaboratory of Mathematics and Applications (LMA) Centre National de la Recherche Scientifique - Unité Mixte de Recherche (CNRS UMR)7348, i3M-DACTIM-MIH (Data Analysis and Computations Through Imaging Modeling - Mathematics, Image, Health), Poitiers University, Poitiers, FranceDiagnostic and Functional Neuroradiology and Brain stimulation Department, 15-20 National Vision Hospital of Paris - Paris University Hospital Center, University of PARIS-SACLAY - UVSQ, Paris, FranceLaboratory of Mathematics and Applications (LMA) Centre National de la Recherche Scientifique - Unité Mixte de Recherche (CNRS UMR)7348, i3M-DACTIM-MIH (Data Analysis and Computations Through Imaging Modeling - Mathematics, Image, Health), Poitiers University, Poitiers, FranceRadiology Department, Poitiers University Hospital, Poitiers University, Poitiers, FranceCenter of Genève Ophtalmologie, Geneve, SwitzerlandLaboratory of Mathematics and Applications (LMA) Centre National de la Recherche Scientifique - Unité Mixte de Recherche (CNRS UMR)7348, i3M-DACTIM-MIH (Data Analysis and Computations Through Imaging Modeling - Mathematics, Image, Health), Poitiers University, Poitiers, FranceDiagnostic and Functional Neuroradiology and Brain stimulation Department, 15-20 National Vision Hospital of Paris - Paris University Hospital Center, University of PARIS-SACLAY - UVSQ, Paris, FranceRadiology Department, Hopital Riveira Chablais, Rennaz, SwitzerlandNeurosurgery Department, Poitiers University Hospital, Poitiers University, Poitiers, FranceLaboratory of Mathematics and Applications (LMA) Centre National de la Recherche Scientifique - Unité Mixte de Recherche (CNRS UMR)7348, i3M-DACTIM-MIH (Data Analysis and Computations Through Imaging Modeling - Mathematics, Image, Health), Poitiers University, Poitiers, FranceRadiology Department, Poitiers University Hospital, Poitiers University, Poitiers, FranceDepartment of Epidemiology and Public Health, Foch Hospital, Suresnes, FranceBackgroundTo investigate the contribution of machine learning decision tree models applied to perfusion and spectroscopy MRI for multiclass classification of lymphomas, glioblastomas, and metastases, and then to bring out the underlying key pathophysiological processes involved in the hierarchization of the decision-making algorithms of the modelsMethodsFrom 2013 to 2020, 180 consecutive patients with histopathologically proved lymphomas (n = 77), glioblastomas (n = 45), and metastases (n = 58) were included in machine learning analysis after undergoing MRI. The perfusion parameters (rCBVmax, PSRmax) and spectroscopic concentration ratios (lac/Cr, Cho/NAA, Cho/Cr, and lip/Cr) were applied to construct Classification and Regression Tree (CART) models for multiclass classification of these brain tumors. A 5-fold random cross validation was performed on the dataset.ResultsThe decision tree model thus constructed successfully classified all 3 tumor types with a performance (AUC) of 0.98 for PCNSLs, 0.98 for GBM and 1.00 for METs. The model accuracy was 0.96 with a RSquare of 0.887. Five rules of classifier combinations were extracted with a predicted probability from 0.907 to 0.989 for that end nodes of the decision tree for tumor multiclass classification. In hierarchical order of importance, the root node (Cho/NAA) in the decision tree algorithm was primarily based on the proliferative, infiltrative, and neuronal destructive characteristics of the tumor, the internal node (PSRmax), on tumor tissue capillary permeability characteristics, and the end node (Lac/Cr or Cho/Cr), on tumor energy glycolytic (Warburg effect), or on membrane lipid tumor metabolism.ConclusionOur study shows potential implementation of machine learning decision tree model algorithms based on a hierarchical, convenient, and personalized use of perfusion and spectroscopy MRI data for multiclass classification of these brain tumors.https://www.frontiersin.org/articles/10.3389/fonc.2023.1089998/fullclassification and regression tree (CART)multiclass classificationlymphomaglioblastomametastasis
spellingShingle Rodolphe Vallée
Rodolphe Vallée
Rodolphe Vallée
Jean-Noël Vallée
Jean-Noël Vallée
Carole Guillevin
Carole Guillevin
Athéna Lallouette
Clément Thomas
Clément Thomas
Guillaume Rittano
Michel Wager
Rémy Guillevin
Rémy Guillevin
Alexandre Vallée
Machine learning decision tree models for multiclass classification of common malignant brain tumors using perfusion and spectroscopy MRI data
Frontiers in Oncology
classification and regression tree (CART)
multiclass classification
lymphoma
glioblastoma
metastasis
title Machine learning decision tree models for multiclass classification of common malignant brain tumors using perfusion and spectroscopy MRI data
title_full Machine learning decision tree models for multiclass classification of common malignant brain tumors using perfusion and spectroscopy MRI data
title_fullStr Machine learning decision tree models for multiclass classification of common malignant brain tumors using perfusion and spectroscopy MRI data
title_full_unstemmed Machine learning decision tree models for multiclass classification of common malignant brain tumors using perfusion and spectroscopy MRI data
title_short Machine learning decision tree models for multiclass classification of common malignant brain tumors using perfusion and spectroscopy MRI data
title_sort machine learning decision tree models for multiclass classification of common malignant brain tumors using perfusion and spectroscopy mri data
topic classification and regression tree (CART)
multiclass classification
lymphoma
glioblastoma
metastasis
url https://www.frontiersin.org/articles/10.3389/fonc.2023.1089998/full
work_keys_str_mv AT rodolphevallee machinelearningdecisiontreemodelsformulticlassclassificationofcommonmalignantbraintumorsusingperfusionandspectroscopymridata
AT rodolphevallee machinelearningdecisiontreemodelsformulticlassclassificationofcommonmalignantbraintumorsusingperfusionandspectroscopymridata
AT rodolphevallee machinelearningdecisiontreemodelsformulticlassclassificationofcommonmalignantbraintumorsusingperfusionandspectroscopymridata
AT jeannoelvallee machinelearningdecisiontreemodelsformulticlassclassificationofcommonmalignantbraintumorsusingperfusionandspectroscopymridata
AT jeannoelvallee machinelearningdecisiontreemodelsformulticlassclassificationofcommonmalignantbraintumorsusingperfusionandspectroscopymridata
AT caroleguillevin machinelearningdecisiontreemodelsformulticlassclassificationofcommonmalignantbraintumorsusingperfusionandspectroscopymridata
AT caroleguillevin machinelearningdecisiontreemodelsformulticlassclassificationofcommonmalignantbraintumorsusingperfusionandspectroscopymridata
AT athenalallouette machinelearningdecisiontreemodelsformulticlassclassificationofcommonmalignantbraintumorsusingperfusionandspectroscopymridata
AT clementthomas machinelearningdecisiontreemodelsformulticlassclassificationofcommonmalignantbraintumorsusingperfusionandspectroscopymridata
AT clementthomas machinelearningdecisiontreemodelsformulticlassclassificationofcommonmalignantbraintumorsusingperfusionandspectroscopymridata
AT guillaumerittano machinelearningdecisiontreemodelsformulticlassclassificationofcommonmalignantbraintumorsusingperfusionandspectroscopymridata
AT michelwager machinelearningdecisiontreemodelsformulticlassclassificationofcommonmalignantbraintumorsusingperfusionandspectroscopymridata
AT remyguillevin machinelearningdecisiontreemodelsformulticlassclassificationofcommonmalignantbraintumorsusingperfusionandspectroscopymridata
AT remyguillevin machinelearningdecisiontreemodelsformulticlassclassificationofcommonmalignantbraintumorsusingperfusionandspectroscopymridata
AT alexandrevallee machinelearningdecisiontreemodelsformulticlassclassificationofcommonmalignantbraintumorsusingperfusionandspectroscopymridata