New Techniques for Limiting Misinformation Propagation

This paper focuses on limiting misinformation propagation in networks. Its first contribution is introducing the notion of vaccinated observers, which is a node enriched with additional power. Vaccination is adding, locally, a plugin or asking for the help of a trusted third party, called a trusted...

Full description

Bibliographic Details
Main Authors: Badreddine Benreguia, Chafik Arar, Hamouma Moumen, Mohammed Amine Merzoug
Format: Article
Language:English
Published: IEEE 2023-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10155450/
_version_ 1827897407063457792
author Badreddine Benreguia
Chafik Arar
Hamouma Moumen
Mohammed Amine Merzoug
author_facet Badreddine Benreguia
Chafik Arar
Hamouma Moumen
Mohammed Amine Merzoug
author_sort Badreddine Benreguia
collection DOAJ
description This paper focuses on limiting misinformation propagation in networks. Its first contribution is introducing the notion of vaccinated observers, which is a node enriched with additional power. Vaccination is adding, locally, a plugin or asking for the help of a trusted third party, called a trusted authority. The plugin or the authority is able to detect if the received information is misinformation or not. Vaccinated Observers must stop forwarding detected misinformation. Based on this notion, two algorithms for limiting misinformation are proposed. The second contribution of the paper is an algorithm based on Moving Observers for locating a strong adversary diffusion source. This algorithm selects a random subset of nodes as observers for a random period <inline-formula> <tex-math notation="LaTeX">$\Delta $ </tex-math></inline-formula>. This means that the observer subset may change over time in a randomized manner. Consequently, the strong adversary diffusion source can&#x2019;t have global knowledge about observers positions. Having these positions by the diffusion source will make its localization by the observers more complicated, even impossible. The third contribution is proposing an algorithm for stopping misinformation propagation based on a punishment strategy. This algorithm has a very simple principle design and it assumes that an authority or a mechanism <inline-formula> <tex-math notation="LaTeX">$A$ </tex-math></inline-formula> is available. The authority <inline-formula> <tex-math notation="LaTeX">$A$ </tex-math></inline-formula> has the ability to detect if the received information is misinformation or not. If a node <inline-formula> <tex-math notation="LaTeX">$n_{i}$ </tex-math></inline-formula> receives information <inline-formula> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula> from its neighbor <inline-formula> <tex-math notation="LaTeX">$n_{j}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula> is detected, by <inline-formula> <tex-math notation="LaTeX">$n_{i}$ </tex-math></inline-formula> via the authority <inline-formula> <tex-math notation="LaTeX">$A$ </tex-math></inline-formula>, as misinformation then <inline-formula> <tex-math notation="LaTeX">$n_{j}$ </tex-math></inline-formula> is punished for a period <inline-formula> <tex-math notation="LaTeX">$pp$ </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">$pp$ </tex-math></inline-formula> stands for punishment period). If the node <inline-formula> <tex-math notation="LaTeX">$n_{j}$ </tex-math></inline-formula> repeats this action for <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> time then the punishment period increases to <inline-formula> <tex-math notation="LaTeX">$n*pp$ </tex-math></inline-formula>. The punishment in this algorithm is stopping the forwarding of the information received from a punished node <inline-formula> <tex-math notation="LaTeX">$n_{j}$ </tex-math></inline-formula>. The simulation results show that the proposed techniques are both efficient and accurate while locating the diffusion source. Consequently, misinformation propagation is limited.
first_indexed 2024-03-12T22:48:40Z
format Article
id doaj.art-f4eaed1ccd6f4a1fba7716ed2b271f75
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-03-12T22:48:40Z
publishDate 2023-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-f4eaed1ccd6f4a1fba7716ed2b271f752023-07-20T23:00:22ZengIEEEIEEE Access2169-35362023-01-0111612346124810.1109/ACCESS.2023.328780710155450New Techniques for Limiting Misinformation PropagationBadreddine Benreguia0https://orcid.org/0000-0002-1181-3950Chafik Arar1https://orcid.org/0000-0002-8830-7140Hamouma Moumen2https://orcid.org/0000-0002-1986-7590Mohammed Amine Merzoug3https://orcid.org/0000-0002-5316-6456Computer Science Department, University of Batna 2, Batna, AlgeriaComputer Science Department, University of Batna 2, Batna, AlgeriaComputer Science Department, University of Batna 2, Batna, AlgeriaComputer Science Department, University of Batna 2, Batna, AlgeriaThis paper focuses on limiting misinformation propagation in networks. Its first contribution is introducing the notion of vaccinated observers, which is a node enriched with additional power. Vaccination is adding, locally, a plugin or asking for the help of a trusted third party, called a trusted authority. The plugin or the authority is able to detect if the received information is misinformation or not. Vaccinated Observers must stop forwarding detected misinformation. Based on this notion, two algorithms for limiting misinformation are proposed. The second contribution of the paper is an algorithm based on Moving Observers for locating a strong adversary diffusion source. This algorithm selects a random subset of nodes as observers for a random period <inline-formula> <tex-math notation="LaTeX">$\Delta $ </tex-math></inline-formula>. This means that the observer subset may change over time in a randomized manner. Consequently, the strong adversary diffusion source can&#x2019;t have global knowledge about observers positions. Having these positions by the diffusion source will make its localization by the observers more complicated, even impossible. The third contribution is proposing an algorithm for stopping misinformation propagation based on a punishment strategy. This algorithm has a very simple principle design and it assumes that an authority or a mechanism <inline-formula> <tex-math notation="LaTeX">$A$ </tex-math></inline-formula> is available. The authority <inline-formula> <tex-math notation="LaTeX">$A$ </tex-math></inline-formula> has the ability to detect if the received information is misinformation or not. If a node <inline-formula> <tex-math notation="LaTeX">$n_{i}$ </tex-math></inline-formula> receives information <inline-formula> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula> from its neighbor <inline-formula> <tex-math notation="LaTeX">$n_{j}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula> is detected, by <inline-formula> <tex-math notation="LaTeX">$n_{i}$ </tex-math></inline-formula> via the authority <inline-formula> <tex-math notation="LaTeX">$A$ </tex-math></inline-formula>, as misinformation then <inline-formula> <tex-math notation="LaTeX">$n_{j}$ </tex-math></inline-formula> is punished for a period <inline-formula> <tex-math notation="LaTeX">$pp$ </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">$pp$ </tex-math></inline-formula> stands for punishment period). If the node <inline-formula> <tex-math notation="LaTeX">$n_{j}$ </tex-math></inline-formula> repeats this action for <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> time then the punishment period increases to <inline-formula> <tex-math notation="LaTeX">$n*pp$ </tex-math></inline-formula>. The punishment in this algorithm is stopping the forwarding of the information received from a punished node <inline-formula> <tex-math notation="LaTeX">$n_{j}$ </tex-math></inline-formula>. The simulation results show that the proposed techniques are both efficient and accurate while locating the diffusion source. Consequently, misinformation propagation is limited.https://ieeexplore.ieee.org/document/10155450/Misinformation propagationdiffusion sourcevaccinated observersmoving observerspunishment
spellingShingle Badreddine Benreguia
Chafik Arar
Hamouma Moumen
Mohammed Amine Merzoug
New Techniques for Limiting Misinformation Propagation
IEEE Access
Misinformation propagation
diffusion source
vaccinated observers
moving observers
punishment
title New Techniques for Limiting Misinformation Propagation
title_full New Techniques for Limiting Misinformation Propagation
title_fullStr New Techniques for Limiting Misinformation Propagation
title_full_unstemmed New Techniques for Limiting Misinformation Propagation
title_short New Techniques for Limiting Misinformation Propagation
title_sort new techniques for limiting misinformation propagation
topic Misinformation propagation
diffusion source
vaccinated observers
moving observers
punishment
url https://ieeexplore.ieee.org/document/10155450/
work_keys_str_mv AT badreddinebenreguia newtechniquesforlimitingmisinformationpropagation
AT chafikarar newtechniquesforlimitingmisinformationpropagation
AT hamoumamoumen newtechniquesforlimitingmisinformationpropagation
AT mohammedaminemerzoug newtechniquesforlimitingmisinformationpropagation