Realtime Picking Point Decision Algorithm of Trellis Grape for High-Speed Robotic Cut-and-Catch Harvesting

For high-speed robotic cut-and-catch harvesting, efficient trellis grape recognition and picking point positioning are crucial factors. In this study, a new method for the rapid positioning of picking points based on synchronous inference for multi-grapes was proposed. Firstly, a three-dimensional r...

Full description

Bibliographic Details
Main Authors: Zhujie Xu, Jizhan Liu, Jie Wang, Lianjiang Cai, Yucheng Jin, Shengyi Zhao, Binbin Xie
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Agronomy
Subjects:
Online Access:https://www.mdpi.com/2073-4395/13/6/1618
_version_ 1797596589070483456
author Zhujie Xu
Jizhan Liu
Jie Wang
Lianjiang Cai
Yucheng Jin
Shengyi Zhao
Binbin Xie
author_facet Zhujie Xu
Jizhan Liu
Jie Wang
Lianjiang Cai
Yucheng Jin
Shengyi Zhao
Binbin Xie
author_sort Zhujie Xu
collection DOAJ
description For high-speed robotic cut-and-catch harvesting, efficient trellis grape recognition and picking point positioning are crucial factors. In this study, a new method for the rapid positioning of picking points based on synchronous inference for multi-grapes was proposed. Firstly, a three-dimensional region of interest for a finite number of grapes was constructed according to the “eye to hand” configuration. Then, a feature-enhanced recognition deep learning model called YOLO v4-SE combined with multi-channel inputs of RGB and depth images was put forward to identify occluded or overlapping grapes and synchronously infer picking points upwards of the prediction boxes of the multi-grapes imaged completely in the three-dimensional region of interest (ROI). Finally, the accuracy of each dimension of the picking points was corrected, and the global continuous picking sequence was planned in the three-dimensional ROI. The recognition experiment in the field showed that YOLO v4-SE has good detection performance in various samples with different interference. The positioning experiment, using a different number of grape bunches from the field, demonstrated that the average recognition success rate is 97% and the average positioning success rate is 93.5%; the average recognition time is 0.0864 s; and the average positioning time is 0.0842 s. The average positioning errors of the <i>x, y,</i> and <i>z</i> directions are 2.598, 2.012, and 1.378 mm, respectively. The average positioning error of the Euclidean distance between the true picking point and the predicted picking point is 7.69 mm. In field synchronous harvesting experiments with different fruiting densities, the average recognition success rate is 97%; the average positioning success rate is 93.606%; and the average picking success rate is 92.78%. The average picking speed is 6.18 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">s</mi><mo>×</mo><msup><mrow><mi>bunch</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>, which meets the harvesting requirements for high-speed cut-and-catch harvesting robots. This method is promising for overcoming time-consuming harvesting caused by the problematic positioning of the grape stem.
first_indexed 2024-03-11T02:52:18Z
format Article
id doaj.art-f4ecbc81524b4013b92b622b660b2e3e
institution Directory Open Access Journal
issn 2073-4395
language English
last_indexed 2024-03-11T02:52:18Z
publishDate 2023-06-01
publisher MDPI AG
record_format Article
series Agronomy
spelling doaj.art-f4ecbc81524b4013b92b622b660b2e3e2023-11-18T08:55:43ZengMDPI AGAgronomy2073-43952023-06-01136161810.3390/agronomy13061618Realtime Picking Point Decision Algorithm of Trellis Grape for High-Speed Robotic Cut-and-Catch HarvestingZhujie Xu0Jizhan Liu1Jie Wang2Lianjiang Cai3Yucheng Jin4Shengyi Zhao5Binbin Xie6Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang 212013, ChinaKey Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang 212013, ChinaKey Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang 212013, ChinaKey Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang 212013, ChinaKey Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang 212013, ChinaKey Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang 212013, ChinaKey Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang 212013, ChinaFor high-speed robotic cut-and-catch harvesting, efficient trellis grape recognition and picking point positioning are crucial factors. In this study, a new method for the rapid positioning of picking points based on synchronous inference for multi-grapes was proposed. Firstly, a three-dimensional region of interest for a finite number of grapes was constructed according to the “eye to hand” configuration. Then, a feature-enhanced recognition deep learning model called YOLO v4-SE combined with multi-channel inputs of RGB and depth images was put forward to identify occluded or overlapping grapes and synchronously infer picking points upwards of the prediction boxes of the multi-grapes imaged completely in the three-dimensional region of interest (ROI). Finally, the accuracy of each dimension of the picking points was corrected, and the global continuous picking sequence was planned in the three-dimensional ROI. The recognition experiment in the field showed that YOLO v4-SE has good detection performance in various samples with different interference. The positioning experiment, using a different number of grape bunches from the field, demonstrated that the average recognition success rate is 97% and the average positioning success rate is 93.5%; the average recognition time is 0.0864 s; and the average positioning time is 0.0842 s. The average positioning errors of the <i>x, y,</i> and <i>z</i> directions are 2.598, 2.012, and 1.378 mm, respectively. The average positioning error of the Euclidean distance between the true picking point and the predicted picking point is 7.69 mm. In field synchronous harvesting experiments with different fruiting densities, the average recognition success rate is 97%; the average positioning success rate is 93.606%; and the average picking success rate is 92.78%. The average picking speed is 6.18 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">s</mi><mo>×</mo><msup><mrow><mi>bunch</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>, which meets the harvesting requirements for high-speed cut-and-catch harvesting robots. This method is promising for overcoming time-consuming harvesting caused by the problematic positioning of the grape stem.https://www.mdpi.com/2073-4395/13/6/1618trellis grapecut-and-catchYOLO v4picking pointpositioning
spellingShingle Zhujie Xu
Jizhan Liu
Jie Wang
Lianjiang Cai
Yucheng Jin
Shengyi Zhao
Binbin Xie
Realtime Picking Point Decision Algorithm of Trellis Grape for High-Speed Robotic Cut-and-Catch Harvesting
Agronomy
trellis grape
cut-and-catch
YOLO v4
picking point
positioning
title Realtime Picking Point Decision Algorithm of Trellis Grape for High-Speed Robotic Cut-and-Catch Harvesting
title_full Realtime Picking Point Decision Algorithm of Trellis Grape for High-Speed Robotic Cut-and-Catch Harvesting
title_fullStr Realtime Picking Point Decision Algorithm of Trellis Grape for High-Speed Robotic Cut-and-Catch Harvesting
title_full_unstemmed Realtime Picking Point Decision Algorithm of Trellis Grape for High-Speed Robotic Cut-and-Catch Harvesting
title_short Realtime Picking Point Decision Algorithm of Trellis Grape for High-Speed Robotic Cut-and-Catch Harvesting
title_sort realtime picking point decision algorithm of trellis grape for high speed robotic cut and catch harvesting
topic trellis grape
cut-and-catch
YOLO v4
picking point
positioning
url https://www.mdpi.com/2073-4395/13/6/1618
work_keys_str_mv AT zhujiexu realtimepickingpointdecisionalgorithmoftrellisgrapeforhighspeedroboticcutandcatchharvesting
AT jizhanliu realtimepickingpointdecisionalgorithmoftrellisgrapeforhighspeedroboticcutandcatchharvesting
AT jiewang realtimepickingpointdecisionalgorithmoftrellisgrapeforhighspeedroboticcutandcatchharvesting
AT lianjiangcai realtimepickingpointdecisionalgorithmoftrellisgrapeforhighspeedroboticcutandcatchharvesting
AT yuchengjin realtimepickingpointdecisionalgorithmoftrellisgrapeforhighspeedroboticcutandcatchharvesting
AT shengyizhao realtimepickingpointdecisionalgorithmoftrellisgrapeforhighspeedroboticcutandcatchharvesting
AT binbinxie realtimepickingpointdecisionalgorithmoftrellisgrapeforhighspeedroboticcutandcatchharvesting