Convergence in $L^p[0,2\pi]$-metric of logarithmic derivative and angular $\upsilon$-density for zeros of entire function of slowly growth
The subclass of a zero order entire function $f$ is pointed out for which the existence of angular $\upsilon$-density for zeros of entire function of zero order is equivalent to convergence in $L^p[0,2\pi]$-metric of its logarithmic derivative.
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Vasyl Stefanyk Precarpathian National University
2015-12-01
|
Series: | Karpatsʹkì Matematičnì Publìkacìï |
Subjects: | |
Online Access: | https://journals.pnu.edu.ua/index.php/cmp/article/view/1399 |
_version_ | 1818970777983123456 |
---|---|
author | M.R. Mostova M.V. Zabolotskyj |
author_facet | M.R. Mostova M.V. Zabolotskyj |
author_sort | M.R. Mostova |
collection | DOAJ |
description | The subclass of a zero order entire function $f$ is pointed out for which the existence of angular $\upsilon$-density for zeros of entire function of zero order is equivalent to convergence in $L^p[0,2\pi]$-metric of its logarithmic derivative. |
first_indexed | 2024-12-20T14:41:53Z |
format | Article |
id | doaj.art-f517e7f3db604cf5babd98874b8e6f3f |
institution | Directory Open Access Journal |
issn | 2075-9827 2313-0210 |
language | English |
last_indexed | 2024-12-20T14:41:53Z |
publishDate | 2015-12-01 |
publisher | Vasyl Stefanyk Precarpathian National University |
record_format | Article |
series | Karpatsʹkì Matematičnì Publìkacìï |
spelling | doaj.art-f517e7f3db604cf5babd98874b8e6f3f2022-12-21T19:37:15ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272313-02102015-12-017220921410.15330/cmp.7.2.209-2141399Convergence in $L^p[0,2\pi]$-metric of logarithmic derivative and angular $\upsilon$-density for zeros of entire function of slowly growthM.R. Mostova0M.V. Zabolotskyj1Ivan Franko Lviv National University, 1 Universytetska str., 79000, Lviv, UkraineIvan Franko Lviv National University, 1 Universytetska str., 79000, Lviv, UkraineThe subclass of a zero order entire function $f$ is pointed out for which the existence of angular $\upsilon$-density for zeros of entire function of zero order is equivalent to convergence in $L^p[0,2\pi]$-metric of its logarithmic derivative.https://journals.pnu.edu.ua/index.php/cmp/article/view/1399logarithmic derivativeentire functionangular densityfourier coefficientsslowly increasing function |
spellingShingle | M.R. Mostova M.V. Zabolotskyj Convergence in $L^p[0,2\pi]$-metric of logarithmic derivative and angular $\upsilon$-density for zeros of entire function of slowly growth Karpatsʹkì Matematičnì Publìkacìï logarithmic derivative entire function angular density fourier coefficients slowly increasing function |
title | Convergence in $L^p[0,2\pi]$-metric of logarithmic derivative and angular $\upsilon$-density for zeros of entire function of slowly growth |
title_full | Convergence in $L^p[0,2\pi]$-metric of logarithmic derivative and angular $\upsilon$-density for zeros of entire function of slowly growth |
title_fullStr | Convergence in $L^p[0,2\pi]$-metric of logarithmic derivative and angular $\upsilon$-density for zeros of entire function of slowly growth |
title_full_unstemmed | Convergence in $L^p[0,2\pi]$-metric of logarithmic derivative and angular $\upsilon$-density for zeros of entire function of slowly growth |
title_short | Convergence in $L^p[0,2\pi]$-metric of logarithmic derivative and angular $\upsilon$-density for zeros of entire function of slowly growth |
title_sort | convergence in l p 0 2 pi metric of logarithmic derivative and angular upsilon density for zeros of entire function of slowly growth |
topic | logarithmic derivative entire function angular density fourier coefficients slowly increasing function |
url | https://journals.pnu.edu.ua/index.php/cmp/article/view/1399 |
work_keys_str_mv | AT mrmostova convergenceinlp02pimetricoflogarithmicderivativeandangularupsilondensityforzerosofentirefunctionofslowlygrowth AT mvzabolotskyj convergenceinlp02pimetricoflogarithmicderivativeandangularupsilondensityforzerosofentirefunctionofslowlygrowth |