Fractional inclusions of the Hermite–Hadamard type for m-polynomial convex interval-valued functions
Abstract The notion of m-polynomial convex interval-valued function Ψ = [ ψ − , ψ + ] $\Psi =[\psi ^{-}, \psi ^{+}]$ is hereby proposed. We point out a relationship that exists between Ψ and its component real-valued functions ψ − $\psi ^{-}$ and ψ + $\psi ^{+}$ . For this class of functions, we est...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2020-09-01
|
Series: | Advances in Difference Equations |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13662-020-02977-3 |
_version_ | 1818235296210223104 |
---|---|
author | Eze R. Nwaeze Muhammad Adil Khan Yu-Ming Chu |
author_facet | Eze R. Nwaeze Muhammad Adil Khan Yu-Ming Chu |
author_sort | Eze R. Nwaeze |
collection | DOAJ |
description | Abstract The notion of m-polynomial convex interval-valued function Ψ = [ ψ − , ψ + ] $\Psi =[\psi ^{-}, \psi ^{+}]$ is hereby proposed. We point out a relationship that exists between Ψ and its component real-valued functions ψ − $\psi ^{-}$ and ψ + $\psi ^{+}$ . For this class of functions, we establish loads of new set inclusions of the Hermite–Hadamard type involving the ρ-Riemann–Liouville fractional integral operators. In particular, we prove, among other things, that if a set-valued function Ψ defined on a convex set S is m-polynomial convex, ρ , ϵ > 0 $\rho,\epsilon >0$ and ζ , η ∈ S $\zeta,\eta \in {\mathbf{S}}$ , then m m + 2 − m − 1 Ψ ( ζ + η 2 ) ⊇ Γ ρ ( ϵ + ρ ) ( η − ζ ) ϵ ρ [ ρ J ζ + ϵ Ψ ( η ) + ρ J η − ϵ Ψ ( ζ ) ] ⊇ Ψ ( ζ ) + Ψ ( η ) m ∑ p = 1 m S p ( ϵ ; ρ ) , $$\begin{aligned} \frac{m}{m+2^{-m}-1}\Psi \biggl(\frac{\zeta +\eta }{2} \biggr)& \supseteq \frac{\Gamma _{\rho }(\epsilon +\rho )}{(\eta -\zeta )^{\frac{\epsilon }{\rho }}} \bigl[{_{\rho }{\mathcal{J}}}_{\zeta ^{+}}^{\epsilon } \Psi (\eta )+_{ \rho }{\mathcal{J}}_{\eta ^{-}}^{\epsilon }\Psi (\zeta ) \bigr] \\ & \supseteq \frac{\Psi (\zeta )+\Psi (\eta )}{m}\sum_{p=1}^{m}S_{p}( \epsilon;\rho ), \end{aligned}$$ where Ψ is Lebesgue integrable on [ ζ , η ] $[\zeta,\eta ]$ , S p ( ϵ ; ρ ) = 2 − ϵ ϵ + ρ p − ϵ ρ B ( ϵ ρ , p + 1 ) $S_{p}(\epsilon;\rho )=2-\frac{\epsilon }{\epsilon +\rho p}- \frac{\epsilon }{\rho }\mathcal{B} (\frac{\epsilon }{\rho }, p+1 )$ and B $\mathcal{B}$ is the beta function. We extend, generalize, and complement existing results in the literature. By taking m ≥ 2 $m\geq 2$ , we derive loads of new and interesting inclusions. We hope that the idea and results obtained herein will be a catalyst towards further investigation. |
first_indexed | 2024-12-12T11:51:43Z |
format | Article |
id | doaj.art-f529b3595eb84c359a25cd49f4ea4590 |
institution | Directory Open Access Journal |
issn | 1687-1847 |
language | English |
last_indexed | 2024-12-12T11:51:43Z |
publishDate | 2020-09-01 |
publisher | SpringerOpen |
record_format | Article |
series | Advances in Difference Equations |
spelling | doaj.art-f529b3595eb84c359a25cd49f4ea45902022-12-22T00:25:18ZengSpringerOpenAdvances in Difference Equations1687-18472020-09-012020111710.1186/s13662-020-02977-3Fractional inclusions of the Hermite–Hadamard type for m-polynomial convex interval-valued functionsEze R. Nwaeze0Muhammad Adil Khan1Yu-Ming Chu2Department of Mathematics and Computer Science, Alabama State UniversityDepartment of Mathematics, University of PeshawarDepartment of Mathematics, Huzhou UniversityAbstract The notion of m-polynomial convex interval-valued function Ψ = [ ψ − , ψ + ] $\Psi =[\psi ^{-}, \psi ^{+}]$ is hereby proposed. We point out a relationship that exists between Ψ and its component real-valued functions ψ − $\psi ^{-}$ and ψ + $\psi ^{+}$ . For this class of functions, we establish loads of new set inclusions of the Hermite–Hadamard type involving the ρ-Riemann–Liouville fractional integral operators. In particular, we prove, among other things, that if a set-valued function Ψ defined on a convex set S is m-polynomial convex, ρ , ϵ > 0 $\rho,\epsilon >0$ and ζ , η ∈ S $\zeta,\eta \in {\mathbf{S}}$ , then m m + 2 − m − 1 Ψ ( ζ + η 2 ) ⊇ Γ ρ ( ϵ + ρ ) ( η − ζ ) ϵ ρ [ ρ J ζ + ϵ Ψ ( η ) + ρ J η − ϵ Ψ ( ζ ) ] ⊇ Ψ ( ζ ) + Ψ ( η ) m ∑ p = 1 m S p ( ϵ ; ρ ) , $$\begin{aligned} \frac{m}{m+2^{-m}-1}\Psi \biggl(\frac{\zeta +\eta }{2} \biggr)& \supseteq \frac{\Gamma _{\rho }(\epsilon +\rho )}{(\eta -\zeta )^{\frac{\epsilon }{\rho }}} \bigl[{_{\rho }{\mathcal{J}}}_{\zeta ^{+}}^{\epsilon } \Psi (\eta )+_{ \rho }{\mathcal{J}}_{\eta ^{-}}^{\epsilon }\Psi (\zeta ) \bigr] \\ & \supseteq \frac{\Psi (\zeta )+\Psi (\eta )}{m}\sum_{p=1}^{m}S_{p}( \epsilon;\rho ), \end{aligned}$$ where Ψ is Lebesgue integrable on [ ζ , η ] $[\zeta,\eta ]$ , S p ( ϵ ; ρ ) = 2 − ϵ ϵ + ρ p − ϵ ρ B ( ϵ ρ , p + 1 ) $S_{p}(\epsilon;\rho )=2-\frac{\epsilon }{\epsilon +\rho p}- \frac{\epsilon }{\rho }\mathcal{B} (\frac{\epsilon }{\rho }, p+1 )$ and B $\mathcal{B}$ is the beta function. We extend, generalize, and complement existing results in the literature. By taking m ≥ 2 $m\geq 2$ , we derive loads of new and interesting inclusions. We hope that the idea and results obtained herein will be a catalyst towards further investigation.http://link.springer.com/article/10.1186/s13662-020-02977-3Hermite–Hadamardm-polynomial convexInterval-valued functionρ-Riemann–Liouville |
spellingShingle | Eze R. Nwaeze Muhammad Adil Khan Yu-Ming Chu Fractional inclusions of the Hermite–Hadamard type for m-polynomial convex interval-valued functions Advances in Difference Equations Hermite–Hadamard m-polynomial convex Interval-valued function ρ-Riemann–Liouville |
title | Fractional inclusions of the Hermite–Hadamard type for m-polynomial convex interval-valued functions |
title_full | Fractional inclusions of the Hermite–Hadamard type for m-polynomial convex interval-valued functions |
title_fullStr | Fractional inclusions of the Hermite–Hadamard type for m-polynomial convex interval-valued functions |
title_full_unstemmed | Fractional inclusions of the Hermite–Hadamard type for m-polynomial convex interval-valued functions |
title_short | Fractional inclusions of the Hermite–Hadamard type for m-polynomial convex interval-valued functions |
title_sort | fractional inclusions of the hermite hadamard type for m polynomial convex interval valued functions |
topic | Hermite–Hadamard m-polynomial convex Interval-valued function ρ-Riemann–Liouville |
url | http://link.springer.com/article/10.1186/s13662-020-02977-3 |
work_keys_str_mv | AT ezernwaeze fractionalinclusionsofthehermitehadamardtypeformpolynomialconvexintervalvaluedfunctions AT muhammadadilkhan fractionalinclusionsofthehermitehadamardtypeformpolynomialconvexintervalvaluedfunctions AT yumingchu fractionalinclusionsofthehermitehadamardtypeformpolynomialconvexintervalvaluedfunctions |