Influence of Support Material on the Structural Evolution of Copper during Electrochemical CO2 Reduction

Abstract The copper‐catalyzed electrochemical CO2 reduction reaction represents an elegant pathway to reduce CO2 emissions while producing a wide range of valuable hydrocarbons. The selectivity for these products depends strongly on the structure and morphology of the copper catalyst. However, conti...

Full description

Bibliographic Details
Main Authors: Ezra S. Koh, Dr. Simon Geiger, Alexander Gunnarson, Timo Imhof, Gregor M. Meyer, Dr. Paul Paciok, Prof. Dr. Bastian J. M. Etzold, Prof. Dr. Marcus Rose, Prof. Dr. Ferdi Schüth, Prof. Dr. Marc Ledendecker
Format: Article
Language:English
Published: Wiley-VCH 2023-03-01
Series:ChemElectroChem
Subjects:
Online Access:https://doi.org/10.1002/celc.202200924
_version_ 1797804299278876672
author Ezra S. Koh
Dr. Simon Geiger
Alexander Gunnarson
Timo Imhof
Gregor M. Meyer
Dr. Paul Paciok
Prof. Dr. Bastian J. M. Etzold
Prof. Dr. Marcus Rose
Prof. Dr. Ferdi Schüth
Prof. Dr. Marc Ledendecker
author_facet Ezra S. Koh
Dr. Simon Geiger
Alexander Gunnarson
Timo Imhof
Gregor M. Meyer
Dr. Paul Paciok
Prof. Dr. Bastian J. M. Etzold
Prof. Dr. Marcus Rose
Prof. Dr. Ferdi Schüth
Prof. Dr. Marc Ledendecker
author_sort Ezra S. Koh
collection DOAJ
description Abstract The copper‐catalyzed electrochemical CO2 reduction reaction represents an elegant pathway to reduce CO2 emissions while producing a wide range of valuable hydrocarbons. The selectivity for these products depends strongly on the structure and morphology of the copper catalyst. However, continued deactivation during catalysis alters the obtained product spectrum. In this work, we report on the stabilizing effect of three different carbon supports with unique pore structures. The influence of pore structure on stability and selectivity was examined by high‐angle annular dark field scanning transmission electron microscopy and gas chromatography measurements in a micro‐flow cell. Supporting particles into confined space was found to increase the barrier for particle agglomeration during 20 h of chronopotentiometry measurements at 100 mA cm−2 resembling long‐term CO2 reduction conditions. We propose a catalyst design preventing coalescence and agglomeration in harsh electrochemical reaction conditions, exemplarily demonstrated for the electrocatalytic CO2 reduction. With this work, we provide important insights into the design of stable CO2 electrocatalysts that can potentially be applied to a wide range of applications.
first_indexed 2024-03-13T05:34:03Z
format Article
id doaj.art-f542ee2b2e294f899db87fbf3281e507
institution Directory Open Access Journal
issn 2196-0216
language English
last_indexed 2024-03-13T05:34:03Z
publishDate 2023-03-01
publisher Wiley-VCH
record_format Article
series ChemElectroChem
spelling doaj.art-f542ee2b2e294f899db87fbf3281e5072023-06-14T12:43:14ZengWiley-VCHChemElectroChem2196-02162023-03-01105n/an/a10.1002/celc.202200924Influence of Support Material on the Structural Evolution of Copper during Electrochemical CO2 ReductionEzra S. Koh0Dr. Simon Geiger1Alexander Gunnarson2Timo Imhof3Gregor M. Meyer4Dr. Paul Paciok5Prof. Dr. Bastian J. M. Etzold6Prof. Dr. Marcus Rose7Prof. Dr. Ferdi Schüth8Prof. Dr. Marc Ledendecker9Technical University of Darmstadt Department of Chemistry Ernst-Berl-Institut für Technische und Makromolekulare Chemie 64287 Darmstadt GermanyDepartment of Technical Thermodynamics Deutsches Zentrum für Luft-und Raumfahrt, Stuttgart Pfaffenwaldring 38–40 70569 StuttgartDepartment of Heterogeneous Catalysis Max Planck-Institut für Kohlenforschung 45470 Mülheim an der Ruhr GermanyTechnical University of Darmstadt Department of Chemistry Ernst-Berl-Institut für Technische und Makromolekulare Chemie 64287 Darmstadt GermanyTechnical University of Darmstadt Department of Chemistry Ernst-Berl-Institut für Technische und Makromolekulare Chemie 64287 Darmstadt GermanyErnst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute Forschungszentrum Jülich GmbH 52425 Jülich GermanyTechnical University of Darmstadt Department of Chemistry Ernst-Berl-Institut für Technische und Makromolekulare Chemie 64287 Darmstadt GermanyTechnical University of Darmstadt Department of Chemistry Ernst-Berl-Institut für Technische und Makromolekulare Chemie 64287 Darmstadt GermanyDepartment of Heterogeneous Catalysis Max Planck-Institut für Kohlenforschung 45470 Mülheim an der Ruhr GermanyTechnical University of Darmstadt Department of Chemistry Ernst-Berl-Institut für Technische und Makromolekulare Chemie 64287 Darmstadt GermanyAbstract The copper‐catalyzed electrochemical CO2 reduction reaction represents an elegant pathway to reduce CO2 emissions while producing a wide range of valuable hydrocarbons. The selectivity for these products depends strongly on the structure and morphology of the copper catalyst. However, continued deactivation during catalysis alters the obtained product spectrum. In this work, we report on the stabilizing effect of three different carbon supports with unique pore structures. The influence of pore structure on stability and selectivity was examined by high‐angle annular dark field scanning transmission electron microscopy and gas chromatography measurements in a micro‐flow cell. Supporting particles into confined space was found to increase the barrier for particle agglomeration during 20 h of chronopotentiometry measurements at 100 mA cm−2 resembling long‐term CO2 reduction conditions. We propose a catalyst design preventing coalescence and agglomeration in harsh electrochemical reaction conditions, exemplarily demonstrated for the electrocatalytic CO2 reduction. With this work, we provide important insights into the design of stable CO2 electrocatalysts that can potentially be applied to a wide range of applications.https://doi.org/10.1002/celc.202200924copperelectrochemical CO2 reductionpore confinementstabilitysupported catalyst
spellingShingle Ezra S. Koh
Dr. Simon Geiger
Alexander Gunnarson
Timo Imhof
Gregor M. Meyer
Dr. Paul Paciok
Prof. Dr. Bastian J. M. Etzold
Prof. Dr. Marcus Rose
Prof. Dr. Ferdi Schüth
Prof. Dr. Marc Ledendecker
Influence of Support Material on the Structural Evolution of Copper during Electrochemical CO2 Reduction
ChemElectroChem
copper
electrochemical CO2 reduction
pore confinement
stability
supported catalyst
title Influence of Support Material on the Structural Evolution of Copper during Electrochemical CO2 Reduction
title_full Influence of Support Material on the Structural Evolution of Copper during Electrochemical CO2 Reduction
title_fullStr Influence of Support Material on the Structural Evolution of Copper during Electrochemical CO2 Reduction
title_full_unstemmed Influence of Support Material on the Structural Evolution of Copper during Electrochemical CO2 Reduction
title_short Influence of Support Material on the Structural Evolution of Copper during Electrochemical CO2 Reduction
title_sort influence of support material on the structural evolution of copper during electrochemical co2 reduction
topic copper
electrochemical CO2 reduction
pore confinement
stability
supported catalyst
url https://doi.org/10.1002/celc.202200924
work_keys_str_mv AT ezraskoh influenceofsupportmaterialonthestructuralevolutionofcopperduringelectrochemicalco2reduction
AT drsimongeiger influenceofsupportmaterialonthestructuralevolutionofcopperduringelectrochemicalco2reduction
AT alexandergunnarson influenceofsupportmaterialonthestructuralevolutionofcopperduringelectrochemicalco2reduction
AT timoimhof influenceofsupportmaterialonthestructuralevolutionofcopperduringelectrochemicalco2reduction
AT gregormmeyer influenceofsupportmaterialonthestructuralevolutionofcopperduringelectrochemicalco2reduction
AT drpaulpaciok influenceofsupportmaterialonthestructuralevolutionofcopperduringelectrochemicalco2reduction
AT profdrbastianjmetzold influenceofsupportmaterialonthestructuralevolutionofcopperduringelectrochemicalco2reduction
AT profdrmarcusrose influenceofsupportmaterialonthestructuralevolutionofcopperduringelectrochemicalco2reduction
AT profdrferdischuth influenceofsupportmaterialonthestructuralevolutionofcopperduringelectrochemicalco2reduction
AT profdrmarcledendecker influenceofsupportmaterialonthestructuralevolutionofcopperduringelectrochemicalco2reduction