Influence of Support Material on the Structural Evolution of Copper during Electrochemical CO2 Reduction
Abstract The copper‐catalyzed electrochemical CO2 reduction reaction represents an elegant pathway to reduce CO2 emissions while producing a wide range of valuable hydrocarbons. The selectivity for these products depends strongly on the structure and morphology of the copper catalyst. However, conti...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley-VCH
2023-03-01
|
Series: | ChemElectroChem |
Subjects: | |
Online Access: | https://doi.org/10.1002/celc.202200924 |
_version_ | 1797804299278876672 |
---|---|
author | Ezra S. Koh Dr. Simon Geiger Alexander Gunnarson Timo Imhof Gregor M. Meyer Dr. Paul Paciok Prof. Dr. Bastian J. M. Etzold Prof. Dr. Marcus Rose Prof. Dr. Ferdi Schüth Prof. Dr. Marc Ledendecker |
author_facet | Ezra S. Koh Dr. Simon Geiger Alexander Gunnarson Timo Imhof Gregor M. Meyer Dr. Paul Paciok Prof. Dr. Bastian J. M. Etzold Prof. Dr. Marcus Rose Prof. Dr. Ferdi Schüth Prof. Dr. Marc Ledendecker |
author_sort | Ezra S. Koh |
collection | DOAJ |
description | Abstract The copper‐catalyzed electrochemical CO2 reduction reaction represents an elegant pathway to reduce CO2 emissions while producing a wide range of valuable hydrocarbons. The selectivity for these products depends strongly on the structure and morphology of the copper catalyst. However, continued deactivation during catalysis alters the obtained product spectrum. In this work, we report on the stabilizing effect of three different carbon supports with unique pore structures. The influence of pore structure on stability and selectivity was examined by high‐angle annular dark field scanning transmission electron microscopy and gas chromatography measurements in a micro‐flow cell. Supporting particles into confined space was found to increase the barrier for particle agglomeration during 20 h of chronopotentiometry measurements at 100 mA cm−2 resembling long‐term CO2 reduction conditions. We propose a catalyst design preventing coalescence and agglomeration in harsh electrochemical reaction conditions, exemplarily demonstrated for the electrocatalytic CO2 reduction. With this work, we provide important insights into the design of stable CO2 electrocatalysts that can potentially be applied to a wide range of applications. |
first_indexed | 2024-03-13T05:34:03Z |
format | Article |
id | doaj.art-f542ee2b2e294f899db87fbf3281e507 |
institution | Directory Open Access Journal |
issn | 2196-0216 |
language | English |
last_indexed | 2024-03-13T05:34:03Z |
publishDate | 2023-03-01 |
publisher | Wiley-VCH |
record_format | Article |
series | ChemElectroChem |
spelling | doaj.art-f542ee2b2e294f899db87fbf3281e5072023-06-14T12:43:14ZengWiley-VCHChemElectroChem2196-02162023-03-01105n/an/a10.1002/celc.202200924Influence of Support Material on the Structural Evolution of Copper during Electrochemical CO2 ReductionEzra S. Koh0Dr. Simon Geiger1Alexander Gunnarson2Timo Imhof3Gregor M. Meyer4Dr. Paul Paciok5Prof. Dr. Bastian J. M. Etzold6Prof. Dr. Marcus Rose7Prof. Dr. Ferdi Schüth8Prof. Dr. Marc Ledendecker9Technical University of Darmstadt Department of Chemistry Ernst-Berl-Institut für Technische und Makromolekulare Chemie 64287 Darmstadt GermanyDepartment of Technical Thermodynamics Deutsches Zentrum für Luft-und Raumfahrt, Stuttgart Pfaffenwaldring 38–40 70569 StuttgartDepartment of Heterogeneous Catalysis Max Planck-Institut für Kohlenforschung 45470 Mülheim an der Ruhr GermanyTechnical University of Darmstadt Department of Chemistry Ernst-Berl-Institut für Technische und Makromolekulare Chemie 64287 Darmstadt GermanyTechnical University of Darmstadt Department of Chemistry Ernst-Berl-Institut für Technische und Makromolekulare Chemie 64287 Darmstadt GermanyErnst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute Forschungszentrum Jülich GmbH 52425 Jülich GermanyTechnical University of Darmstadt Department of Chemistry Ernst-Berl-Institut für Technische und Makromolekulare Chemie 64287 Darmstadt GermanyTechnical University of Darmstadt Department of Chemistry Ernst-Berl-Institut für Technische und Makromolekulare Chemie 64287 Darmstadt GermanyDepartment of Heterogeneous Catalysis Max Planck-Institut für Kohlenforschung 45470 Mülheim an der Ruhr GermanyTechnical University of Darmstadt Department of Chemistry Ernst-Berl-Institut für Technische und Makromolekulare Chemie 64287 Darmstadt GermanyAbstract The copper‐catalyzed electrochemical CO2 reduction reaction represents an elegant pathway to reduce CO2 emissions while producing a wide range of valuable hydrocarbons. The selectivity for these products depends strongly on the structure and morphology of the copper catalyst. However, continued deactivation during catalysis alters the obtained product spectrum. In this work, we report on the stabilizing effect of three different carbon supports with unique pore structures. The influence of pore structure on stability and selectivity was examined by high‐angle annular dark field scanning transmission electron microscopy and gas chromatography measurements in a micro‐flow cell. Supporting particles into confined space was found to increase the barrier for particle agglomeration during 20 h of chronopotentiometry measurements at 100 mA cm−2 resembling long‐term CO2 reduction conditions. We propose a catalyst design preventing coalescence and agglomeration in harsh electrochemical reaction conditions, exemplarily demonstrated for the electrocatalytic CO2 reduction. With this work, we provide important insights into the design of stable CO2 electrocatalysts that can potentially be applied to a wide range of applications.https://doi.org/10.1002/celc.202200924copperelectrochemical CO2 reductionpore confinementstabilitysupported catalyst |
spellingShingle | Ezra S. Koh Dr. Simon Geiger Alexander Gunnarson Timo Imhof Gregor M. Meyer Dr. Paul Paciok Prof. Dr. Bastian J. M. Etzold Prof. Dr. Marcus Rose Prof. Dr. Ferdi Schüth Prof. Dr. Marc Ledendecker Influence of Support Material on the Structural Evolution of Copper during Electrochemical CO2 Reduction ChemElectroChem copper electrochemical CO2 reduction pore confinement stability supported catalyst |
title | Influence of Support Material on the Structural Evolution of Copper during Electrochemical CO2 Reduction |
title_full | Influence of Support Material on the Structural Evolution of Copper during Electrochemical CO2 Reduction |
title_fullStr | Influence of Support Material on the Structural Evolution of Copper during Electrochemical CO2 Reduction |
title_full_unstemmed | Influence of Support Material on the Structural Evolution of Copper during Electrochemical CO2 Reduction |
title_short | Influence of Support Material on the Structural Evolution of Copper during Electrochemical CO2 Reduction |
title_sort | influence of support material on the structural evolution of copper during electrochemical co2 reduction |
topic | copper electrochemical CO2 reduction pore confinement stability supported catalyst |
url | https://doi.org/10.1002/celc.202200924 |
work_keys_str_mv | AT ezraskoh influenceofsupportmaterialonthestructuralevolutionofcopperduringelectrochemicalco2reduction AT drsimongeiger influenceofsupportmaterialonthestructuralevolutionofcopperduringelectrochemicalco2reduction AT alexandergunnarson influenceofsupportmaterialonthestructuralevolutionofcopperduringelectrochemicalco2reduction AT timoimhof influenceofsupportmaterialonthestructuralevolutionofcopperduringelectrochemicalco2reduction AT gregormmeyer influenceofsupportmaterialonthestructuralevolutionofcopperduringelectrochemicalco2reduction AT drpaulpaciok influenceofsupportmaterialonthestructuralevolutionofcopperduringelectrochemicalco2reduction AT profdrbastianjmetzold influenceofsupportmaterialonthestructuralevolutionofcopperduringelectrochemicalco2reduction AT profdrmarcusrose influenceofsupportmaterialonthestructuralevolutionofcopperduringelectrochemicalco2reduction AT profdrferdischuth influenceofsupportmaterialonthestructuralevolutionofcopperduringelectrochemicalco2reduction AT profdrmarcledendecker influenceofsupportmaterialonthestructuralevolutionofcopperduringelectrochemicalco2reduction |