The possibility of twin star solutions in a model based on lattice QCD thermodynamics

Abstract The properties of compact stars and in particular the existence of twin star solutions are investigated within an effective model that is constrained by lattice QCD thermodynamics. The model is modified at large baryon densities to incorporate a large variety of scenarios of first order pha...

Full description

Bibliographic Details
Main Authors: P. Jakobus, A. Motornenko, R. O. Gomes, J. Steinheimer, H. Stoecker
Format: Article
Language:English
Published: SpringerOpen 2021-01-01
Series:European Physical Journal C: Particles and Fields
Online Access:https://doi.org/10.1140/epjc/s10052-020-08779-x
Description
Summary:Abstract The properties of compact stars and in particular the existence of twin star solutions are investigated within an effective model that is constrained by lattice QCD thermodynamics. The model is modified at large baryon densities to incorporate a large variety of scenarios of first order phase transitions to a phase of deconfined quarks. This is achieved by matching two different variants of the bag model equation of state, in order to estimate the role of the Bag model parameters on the appearance of a second family of neutron stars. The produced sequences of neutron stars are compared with modern constrains on stellar masses, radii, and tidal deformability from astrophysical observations and gravitational wave analyses. It is found that those scenarios in our analysis, in which a third family of stars appeared due to the deconfinement transition, are disfavored from astrophysical constraints.
ISSN:1434-6044
1434-6052