Chaotic Characteristics in Devaney’s Framework for Set-Valued Discrete Dynamical Systems
This paper focuses on the relationship between a non-autonomous discrete dynamical system (NDDS) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>H</mi><mo>,</...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-12-01
|
Series: | Axioms |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-1680/13/1/20 |
_version_ | 1827372767910035456 |
---|---|
author | Jie Zhou Tianxiu Lu Jiazheng Zhao |
author_facet | Jie Zhou Tianxiu Lu Jiazheng Zhao |
author_sort | Jie Zhou |
collection | DOAJ |
description | This paper focuses on the relationship between a non-autonomous discrete dynamical system (NDDS) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>H</mi><mo>,</mo><msub><mi>f</mi><mrow><mn>1</mn><mo>,</mo><mo>∞</mo></mrow></msub><mo>)</mo></mrow></semantics></math></inline-formula> and its induced set-valued discrete dynamical systems <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi mathvariant="script">K</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>,</mo><msub><mover accent="true"><mi>f</mi><mo>¯</mo></mover><mrow><mn>1</mn><mo>,</mo><mo>∞</mo></mrow></msub><mo>)</mo></mrow></semantics></math></inline-formula>. Specifically, it explores the chaotic properties of these systems. The main finding is that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mrow><mn>1</mn><mo>,</mo><mo>∞</mo></mrow></msub></semantics></math></inline-formula> is Devaney chaotic if and only if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mover accent="true"><mi>f</mi><mo>¯</mo></mover><mrow><mn>1</mn><mo>,</mo><mo>∞</mo></mrow></msub></semantics></math></inline-formula> is Devaney chaotic in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>w</mi><mi>e</mi></msup></semantics></math></inline-formula>-topology. The paper also provides similar conclusions for weak mixing, mixing, mild mixing, chain-transitivity, and chain-mixing in non-autonomous set-valued discrete dynamical systems (NSDDSs). Additionally, the paper proves that weak mixing implies sensitivity in NSDDSs. |
first_indexed | 2024-03-08T11:06:51Z |
format | Article |
id | doaj.art-f56f94516a1a49ec9efd0483ba24fba8 |
institution | Directory Open Access Journal |
issn | 2075-1680 |
language | English |
last_indexed | 2024-03-08T11:06:51Z |
publishDate | 2023-12-01 |
publisher | MDPI AG |
record_format | Article |
series | Axioms |
spelling | doaj.art-f56f94516a1a49ec9efd0483ba24fba82024-01-26T15:03:00ZengMDPI AGAxioms2075-16802023-12-011312010.3390/axioms13010020Chaotic Characteristics in Devaney’s Framework for Set-Valued Discrete Dynamical SystemsJie Zhou0Tianxiu Lu1Jiazheng Zhao2College of Mathematics and Statistics, Sichuan University of Science and Engineering, Zigong 643000, ChinaCollege of Mathematics and Statistics, Sichuan University of Science and Engineering, Zigong 643000, ChinaCollege of Mathematics and Statistics, Sichuan University of Science and Engineering, Zigong 643000, ChinaThis paper focuses on the relationship between a non-autonomous discrete dynamical system (NDDS) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>H</mi><mo>,</mo><msub><mi>f</mi><mrow><mn>1</mn><mo>,</mo><mo>∞</mo></mrow></msub><mo>)</mo></mrow></semantics></math></inline-formula> and its induced set-valued discrete dynamical systems <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi mathvariant="script">K</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>,</mo><msub><mover accent="true"><mi>f</mi><mo>¯</mo></mover><mrow><mn>1</mn><mo>,</mo><mo>∞</mo></mrow></msub><mo>)</mo></mrow></semantics></math></inline-formula>. Specifically, it explores the chaotic properties of these systems. The main finding is that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mrow><mn>1</mn><mo>,</mo><mo>∞</mo></mrow></msub></semantics></math></inline-formula> is Devaney chaotic if and only if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mover accent="true"><mi>f</mi><mo>¯</mo></mover><mrow><mn>1</mn><mo>,</mo><mo>∞</mo></mrow></msub></semantics></math></inline-formula> is Devaney chaotic in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>w</mi><mi>e</mi></msup></semantics></math></inline-formula>-topology. The paper also provides similar conclusions for weak mixing, mixing, mild mixing, chain-transitivity, and chain-mixing in non-autonomous set-valued discrete dynamical systems (NSDDSs). Additionally, the paper proves that weak mixing implies sensitivity in NSDDSs.https://www.mdpi.com/2075-1680/13/1/20Devaney chaossensitivityset-valued discrete dynamical systems |
spellingShingle | Jie Zhou Tianxiu Lu Jiazheng Zhao Chaotic Characteristics in Devaney’s Framework for Set-Valued Discrete Dynamical Systems Axioms Devaney chaos sensitivity set-valued discrete dynamical systems |
title | Chaotic Characteristics in Devaney’s Framework for Set-Valued Discrete Dynamical Systems |
title_full | Chaotic Characteristics in Devaney’s Framework for Set-Valued Discrete Dynamical Systems |
title_fullStr | Chaotic Characteristics in Devaney’s Framework for Set-Valued Discrete Dynamical Systems |
title_full_unstemmed | Chaotic Characteristics in Devaney’s Framework for Set-Valued Discrete Dynamical Systems |
title_short | Chaotic Characteristics in Devaney’s Framework for Set-Valued Discrete Dynamical Systems |
title_sort | chaotic characteristics in devaney s framework for set valued discrete dynamical systems |
topic | Devaney chaos sensitivity set-valued discrete dynamical systems |
url | https://www.mdpi.com/2075-1680/13/1/20 |
work_keys_str_mv | AT jiezhou chaoticcharacteristicsindevaneysframeworkforsetvalueddiscretedynamicalsystems AT tianxiulu chaoticcharacteristicsindevaneysframeworkforsetvalueddiscretedynamicalsystems AT jiazhengzhao chaoticcharacteristicsindevaneysframeworkforsetvalueddiscretedynamicalsystems |