Connecting Obsidian Artifacts with Their Sources Using Multivariate Statistical Analysis of LIBS Spectral Signatures

With the recent introduction of handheld instruments for field use, laser-induced breakdown spectroscopy (LIBS) is emerging as a practical technology for real-time in situ geochemical analysis in the field. LIBS is a form of optical emission spectroscopy that is simultaneously sensitive to all eleme...

Full description

Bibliographic Details
Main Authors: Russell S. Harmon, Chandra S. Throckmorton, Greg Haverstock, Dirk Baron, Robert M. Yohe, Richard R. Hark, Jeffrey R. Knott
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:Minerals
Subjects:
Online Access:https://www.mdpi.com/2075-163X/13/10/1284
Description
Summary:With the recent introduction of handheld instruments for field use, laser-induced breakdown spectroscopy (LIBS) is emerging as a practical technology for real-time in situ geochemical analysis in the field. LIBS is a form of optical emission spectroscopy that is simultaneously sensitive to all elements with a single laser shot so that a broadband LIBS spectrum can be considered a diagnostic <i>geochemical fingerprint</i>. Sets of LIBS spectra were collected for seven obsidian centers across north-central California, with data processed using multivariate statistical analysis and pattern recognition techniques. Although all obsidians exhibit similar bulk compositions, different regional obsidian sources were effectively discriminated via partial least squares discriminant analysis. Obsidian artifacts from seven archaeological sites were matched to their putative sources with a high degree of confidence.
ISSN:2075-163X