Time-resolved high-harmonic spectroscopy of ultrafast ring-opening of 1,3-cyclohexadiene

We report, to the best of our knowledge, the first time-resolved high-harmonic spectroscopy (TR-HHS) study of a chemical bond rearrangement. We investigate the transient change of the high-harmonic signal from 1,3-cyclohexadiene (CHD), which undergoes ring-opening and isomerizes to 1,3,5-hexatriene...

Full description

Bibliographic Details
Main Authors: Kaneshima Keisuke, Ninota Yuki, Sekikawa Taro
Format: Article
Language:English
Published: EDP Sciences 2019-01-01
Series:EPJ Web of Conferences
Online Access:https://www.epj-conferences.org/articles/epjconf/pdf/2019/10/epjconf_up2019_09017.pdf
Description
Summary:We report, to the best of our knowledge, the first time-resolved high-harmonic spectroscopy (TR-HHS) study of a chemical bond rearrangement. We investigate the transient change of the high-harmonic signal from 1,3-cyclohexadiene (CHD), which undergoes ring-opening and isomerizes to 1,3,5-hexatriene (HT) upon photoexcitation. By associating the variation in the harmonic yield to the changes in the electronic state and vibrational frequencies of the molecule due to isomerization, we find that the CHD excited via two-photon absorption of 3.1 eV photons isomerizes to HT, i.e., ring-opening occurs, around 400 fs after the excitation. The present results demonstrate that TR-HHS, which can track both electronic and nuclear dynamics, is a powerful tool for studying ultrafast photochemical reactions.
ISSN:2100-014X