Mechanical effects on KATP channel gating in rat ventricular myocytes.

Cardiac KATP channels link metabolism with electrical activity. They are implicated in arrhythmias, secretion of atrial natriuretic peptide and protection of the heart from hypertrophy and failure. These processes may involve mechanosensitivity. KATP channels can be activated by mechanical stimulati...

Full description

Bibliographic Details
Main Authors: Haixia Huang, Lifang Liang, Ping Liu, Hua Wei, Frederick Sachs, Weizhen Niu, Wei Wang
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2013-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3653899?pdf=render
Description
Summary:Cardiac KATP channels link metabolism with electrical activity. They are implicated in arrhythmias, secretion of atrial natriuretic peptide and protection of the heart from hypertrophy and failure. These processes may involve mechanosensitivity. KATP channels can be activated by mechanical stimulation and disrupting the cortical actin increases the activity. We propose that KATP channels are modulated by local bilayer tension and this tension is affected by cortical F-actin. Here we measured KATP background activity and stretch sensitivity with inside-out patches of rat ventricular myocytes before and after disrupting F-actin. Disrupting F-actin potentiated background activity but did not influence the slope sensitivity in the semilog relationship of NPo vs. suction that is a measure of the change in dimensions between closed and open states. Thus actin alters prestress on the channel probably by parallel elastic sharing of mean cortical tension with the bilayer.
ISSN:1932-6203