Extension of the Kantorovich Theorem to Equations in Vector Metric Spaces: Applications to Functional Differential Equations

The equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo>)</mo>...

Full description

Bibliographic Details
Main Authors: Evgeny Zhukovskiy, Elena Panasenko
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/1/64
_version_ 1827384687706767360
author Evgeny Zhukovskiy
Elena Panasenko
author_facet Evgeny Zhukovskiy
Elena Panasenko
author_sort Evgeny Zhukovskiy
collection DOAJ
description The equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mover accent="true"><mi>y</mi><mo>˜</mo></mover><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>:</mo><mi>X</mi><mo>×</mo><mi>X</mi><mo>→</mo><mi>Y</mi><mo>,</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>X</mi><mo>,</mo><mi>Y</mi></mrow></semantics></math></inline-formula> are vector metric spaces (meaning that the values of a distance between the points in these spaces belong to some cones <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>E</mi><mo>+</mo></msub><mo>,</mo><msub><mi>M</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula> of a Banach space <i>E</i> and a linear space <i>M</i>, respectively), is considered. This operator equation is compared with a “model” equation, namely, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>g</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>0</mn><mo>,</mo></mrow></semantics></math></inline-formula> where a continuous map <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>g</mi><mo>:</mo><msub><mi>E</mi><mo>+</mo></msub><mo>×</mo><msub><mi>E</mi><mo>+</mo></msub><mo>→</mo><msub><mi>M</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula> is orderly covering in the first argument and antitone in the second one. The idea to study equations comparing them with “simpler” ones goes back to the Kantorovich fixed-point theorem for an operator acting in a Banach space. In this paper, the conditions under which the solvability of the “model” equation guarantees the existence of solutions to the operator equation are obtained. The statement proved extends the recent results about fixed points and coincidence points to more general equations in more general vector metric spaces. The results obtained for the operator equation are then applied to the study of the solvability, as well as to finding solution estimates, of the Cauchy problem for a functional differential equation.
first_indexed 2024-03-08T15:02:56Z
format Article
id doaj.art-f586b2e217c34cf7a0eabec92f79b93e
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-08T15:02:56Z
publishDate 2023-12-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-f586b2e217c34cf7a0eabec92f79b93e2024-01-10T15:03:28ZengMDPI AGMathematics2227-73902023-12-011216410.3390/math12010064Extension of the Kantorovich Theorem to Equations in Vector Metric Spaces: Applications to Functional Differential EquationsEvgeny Zhukovskiy0Elena Panasenko1Department of Functional Analysis, Derzhavin Tambov State University, Tambov 392000, RussiaDepartment of Functional Analysis, Derzhavin Tambov State University, Tambov 392000, RussiaThe equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mover accent="true"><mi>y</mi><mo>˜</mo></mover><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>:</mo><mi>X</mi><mo>×</mo><mi>X</mi><mo>→</mo><mi>Y</mi><mo>,</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>X</mi><mo>,</mo><mi>Y</mi></mrow></semantics></math></inline-formula> are vector metric spaces (meaning that the values of a distance between the points in these spaces belong to some cones <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>E</mi><mo>+</mo></msub><mo>,</mo><msub><mi>M</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula> of a Banach space <i>E</i> and a linear space <i>M</i>, respectively), is considered. This operator equation is compared with a “model” equation, namely, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>g</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>0</mn><mo>,</mo></mrow></semantics></math></inline-formula> where a continuous map <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>g</mi><mo>:</mo><msub><mi>E</mi><mo>+</mo></msub><mo>×</mo><msub><mi>E</mi><mo>+</mo></msub><mo>→</mo><msub><mi>M</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula> is orderly covering in the first argument and antitone in the second one. The idea to study equations comparing them with “simpler” ones goes back to the Kantorovich fixed-point theorem for an operator acting in a Banach space. In this paper, the conditions under which the solvability of the “model” equation guarantees the existence of solutions to the operator equation are obtained. The statement proved extends the recent results about fixed points and coincidence points to more general equations in more general vector metric spaces. The results obtained for the operator equation are then applied to the study of the solvability, as well as to finding solution estimates, of the Cauchy problem for a functional differential equation.https://www.mdpi.com/2227-7390/12/1/64operator equation in vector metric spaceexistence and estimates of solutionsfunctional differential equation
spellingShingle Evgeny Zhukovskiy
Elena Panasenko
Extension of the Kantorovich Theorem to Equations in Vector Metric Spaces: Applications to Functional Differential Equations
Mathematics
operator equation in vector metric space
existence and estimates of solutions
functional differential equation
title Extension of the Kantorovich Theorem to Equations in Vector Metric Spaces: Applications to Functional Differential Equations
title_full Extension of the Kantorovich Theorem to Equations in Vector Metric Spaces: Applications to Functional Differential Equations
title_fullStr Extension of the Kantorovich Theorem to Equations in Vector Metric Spaces: Applications to Functional Differential Equations
title_full_unstemmed Extension of the Kantorovich Theorem to Equations in Vector Metric Spaces: Applications to Functional Differential Equations
title_short Extension of the Kantorovich Theorem to Equations in Vector Metric Spaces: Applications to Functional Differential Equations
title_sort extension of the kantorovich theorem to equations in vector metric spaces applications to functional differential equations
topic operator equation in vector metric space
existence and estimates of solutions
functional differential equation
url https://www.mdpi.com/2227-7390/12/1/64
work_keys_str_mv AT evgenyzhukovskiy extensionofthekantorovichtheoremtoequationsinvectormetricspacesapplicationstofunctionaldifferentialequations
AT elenapanasenko extensionofthekantorovichtheoremtoequationsinvectormetricspacesapplicationstofunctionaldifferentialequations