Evaluating Optical Clock Performance for GNSS Positioning
Atomic clocks are highly precise timing devices used in numerous Positioning, Navigation, and Timing (PNT) applications on the ground and in outer space. In recent years, however, more precise timing solutions based on optical technology have been introduced as current technology capabilities advanc...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-06-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/23/13/5998 |
_version_ | 1797590889806168064 |
---|---|
author | Enkhtuvshin Boldbaatar Donald Grant Suelynn Choy Safoora Zaminpardaz Lucas Holden |
author_facet | Enkhtuvshin Boldbaatar Donald Grant Suelynn Choy Safoora Zaminpardaz Lucas Holden |
author_sort | Enkhtuvshin Boldbaatar |
collection | DOAJ |
description | Atomic clocks are highly precise timing devices used in numerous Positioning, Navigation, and Timing (PNT) applications on the ground and in outer space. In recent years, however, more precise timing solutions based on optical technology have been introduced as current technology capabilities advance. State-of-the-art optical clocks—predicted to be the next level of their predecessor atomic clocks—have achieved ultimate uncertainty of 1 × 10<sup>−18</sup> and beyond, which exceeds the best atomic clock’s performance by two orders of magnitude. Hence, the successful development of optical clocks has drawn significant attention in academia and industry to exploit many more opportunities. This paper first provides an overview of the emerging optical clock technology, its current development, and characteristics, followed by a clock stability analysis of some of the successfully developed optical clocks against current Global Navigation Satellite System (GNSS) satellite clocks to discuss the optical clock potentiality in GNSS positioning. The overlapping Allan Deviation (ADEV) method is applied to estimate the satellite clock stability from International GNSS Service (IGS) clock products, whereas the optical clock details are sourced from the existing literature. The findings are (a) the optical clocks are more stable than that of atomic clocks onboard GNSS satellites, though they may require further technological maturity to meet spacecraft payload requirements, and (b) in GNSS positioning, optical clocks could potentially offer less than a 1 mm range error (clock-related) in 30 s and at least 10 times better timing performance after 900 s in contrast to the Galileo satellite atomic clocks—which is determined in this study as the most stable GNSS atomic clock type used in satellite positioning. |
first_indexed | 2024-03-11T01:29:52Z |
format | Article |
id | doaj.art-f589df5a33c242d6b51e86b97dc7760e |
institution | Directory Open Access Journal |
issn | 1424-8220 |
language | English |
last_indexed | 2024-03-11T01:29:52Z |
publishDate | 2023-06-01 |
publisher | MDPI AG |
record_format | Article |
series | Sensors |
spelling | doaj.art-f589df5a33c242d6b51e86b97dc7760e2023-11-18T17:29:52ZengMDPI AGSensors1424-82202023-06-012313599810.3390/s23135998Evaluating Optical Clock Performance for GNSS PositioningEnkhtuvshin Boldbaatar0Donald Grant1Suelynn Choy2Safoora Zaminpardaz3Lucas Holden4School of Science (Geospatial), RMIT University, Melbourne, VIC 3001, AustraliaSchool of Science (Geospatial), RMIT University, Melbourne, VIC 3001, AustraliaSchool of Science (Geospatial), RMIT University, Melbourne, VIC 3001, AustraliaSchool of Science (Geospatial), RMIT University, Melbourne, VIC 3001, AustraliaSchool of Science (Geospatial), RMIT University, Melbourne, VIC 3001, AustraliaAtomic clocks are highly precise timing devices used in numerous Positioning, Navigation, and Timing (PNT) applications on the ground and in outer space. In recent years, however, more precise timing solutions based on optical technology have been introduced as current technology capabilities advance. State-of-the-art optical clocks—predicted to be the next level of their predecessor atomic clocks—have achieved ultimate uncertainty of 1 × 10<sup>−18</sup> and beyond, which exceeds the best atomic clock’s performance by two orders of magnitude. Hence, the successful development of optical clocks has drawn significant attention in academia and industry to exploit many more opportunities. This paper first provides an overview of the emerging optical clock technology, its current development, and characteristics, followed by a clock stability analysis of some of the successfully developed optical clocks against current Global Navigation Satellite System (GNSS) satellite clocks to discuss the optical clock potentiality in GNSS positioning. The overlapping Allan Deviation (ADEV) method is applied to estimate the satellite clock stability from International GNSS Service (IGS) clock products, whereas the optical clock details are sourced from the existing literature. The findings are (a) the optical clocks are more stable than that of atomic clocks onboard GNSS satellites, though they may require further technological maturity to meet spacecraft payload requirements, and (b) in GNSS positioning, optical clocks could potentially offer less than a 1 mm range error (clock-related) in 30 s and at least 10 times better timing performance after 900 s in contrast to the Galileo satellite atomic clocks—which is determined in this study as the most stable GNSS atomic clock type used in satellite positioning.https://www.mdpi.com/1424-8220/23/13/5998optical clockssatellite atomic clocksclock stability analysisAllan deviationGNSSPositioning, Navigation, and Timing (PNT) |
spellingShingle | Enkhtuvshin Boldbaatar Donald Grant Suelynn Choy Safoora Zaminpardaz Lucas Holden Evaluating Optical Clock Performance for GNSS Positioning Sensors optical clocks satellite atomic clocks clock stability analysis Allan deviation GNSS Positioning, Navigation, and Timing (PNT) |
title | Evaluating Optical Clock Performance for GNSS Positioning |
title_full | Evaluating Optical Clock Performance for GNSS Positioning |
title_fullStr | Evaluating Optical Clock Performance for GNSS Positioning |
title_full_unstemmed | Evaluating Optical Clock Performance for GNSS Positioning |
title_short | Evaluating Optical Clock Performance for GNSS Positioning |
title_sort | evaluating optical clock performance for gnss positioning |
topic | optical clocks satellite atomic clocks clock stability analysis Allan deviation GNSS Positioning, Navigation, and Timing (PNT) |
url | https://www.mdpi.com/1424-8220/23/13/5998 |
work_keys_str_mv | AT enkhtuvshinboldbaatar evaluatingopticalclockperformanceforgnsspositioning AT donaldgrant evaluatingopticalclockperformanceforgnsspositioning AT suelynnchoy evaluatingopticalclockperformanceforgnsspositioning AT safoorazaminpardaz evaluatingopticalclockperformanceforgnsspositioning AT lucasholden evaluatingopticalclockperformanceforgnsspositioning |