Simulated high-latitude soil thermal dynamics during the past 4 decades

Soil temperature (<i>T</i><sub>s</sub>) change is a key indicator of the dynamics of permafrost. On seasonal and interannual timescales, the variability of <i>T</i><sub>s</sub> determines the active-layer depth, which regulates hydrological soil proper...

Full description

Bibliographic Details
Main Authors: S. Peng, P. Ciais, G. Krinner, T. Wang, I. Gouttevin, A. D. McGuire, D. Lawrence, E. Burke, X. Chen, B. Decharme, C. Koven, A. MacDougall, A. Rinke, K. Saito, W. Zhang, R. Alkama, T. J. Bohn, C. Delire, T. Hajima, D. Ji, D. P. Lettenmaier, P. A. Miller, J. C. Moore, B. Smith, T. Sueyoshi
Format: Article
Language:English
Published: Copernicus Publications 2016-01-01
Series:The Cryosphere
Online Access:http://www.the-cryosphere.net/10/179/2016/tc-10-179-2016.pdf
_version_ 1819079512616337408
author S. Peng
P. Ciais
G. Krinner
T. Wang
I. Gouttevin
A. D. McGuire
D. Lawrence
E. Burke
X. Chen
B. Decharme
C. Koven
A. MacDougall
A. Rinke
K. Saito
W. Zhang
R. Alkama
T. J. Bohn
C. Delire
T. Hajima
D. Ji
D. P. Lettenmaier
P. A. Miller
J. C. Moore
B. Smith
T. Sueyoshi
author_facet S. Peng
P. Ciais
G. Krinner
T. Wang
I. Gouttevin
A. D. McGuire
D. Lawrence
E. Burke
X. Chen
B. Decharme
C. Koven
A. MacDougall
A. Rinke
K. Saito
W. Zhang
R. Alkama
T. J. Bohn
C. Delire
T. Hajima
D. Ji
D. P. Lettenmaier
P. A. Miller
J. C. Moore
B. Smith
T. Sueyoshi
author_sort S. Peng
collection DOAJ
description Soil temperature (<i>T</i><sub>s</sub>) change is a key indicator of the dynamics of permafrost. On seasonal and interannual timescales, the variability of <i>T</i><sub>s</sub> determines the active-layer depth, which regulates hydrological soil properties and biogeochemical processes. On the multi-decadal scale, increasing <i>T</i><sub>s</sub> not only drives permafrost thaw/retreat but can also trigger and accelerate the decomposition of soil organic carbon. The magnitude of permafrost carbon feedbacks is thus closely linked to the rate of change of soil thermal regimes. In this study, we used nine process-based ecosystem models with permafrost processes, all forced by different observation-based climate forcing during the period 1960–2000, to characterize the warming rate of <i>T</i><sub>s</sub> in permafrost regions. There is a large spread of <i>T</i><sub>s</sub> trends at 20 cm depth across the models, with trend values ranging from 0.010 ± 0.003 to 0.031 ± 0.005 °C yr<sup>−1</sup>. Most models show smaller increase in <i>T</i><sub>s</sub> with increasing depth. Air temperature (<i>T</i>sub>a</sub>) and longwave downward radiation (LWDR) are the main drivers of <i>T</i><sub>s</sub> trends, but their relative contributions differ amongst the models. Different trends of LWDR used in the forcing of models can explain 61 % of their differences in <i>T</i><sub>s</sub> trends, while trends of <i>T</i><sub>a</sub> only explain 5 % of the differences in <i>T</i><sub>s</sub> trends. Uncertain climate forcing contributes a larger uncertainty in <i>T</i><sub>s</sub> trends (0.021 ± 0.008 °C yr<sup>−1</sup>, mean ± standard deviation) than the uncertainty of model structure (0.012 ± 0.001 °C yr<sup>−1</sup>), diagnosed from the range of response between different models, normalized to the same forcing. In addition, the loss rate of near-surface permafrost area, defined as total area where the maximum seasonal active-layer thickness (ALT) is less than 3 m loss rate, is found to be significantly correlated with the magnitude of the trends of <i>T</i><sub>s</sub> at 1 m depth across the models (<i>R</i> = −0.85, <i>P</i> = 0.003), but not with the initial total near-surface permafrost area (<i>R</i> = −0.30, <i>P</i> = 0.438). The sensitivity of the total boreal near-surface permafrost area to <i>T</i><sub>s</sub> at 1 m is estimated to be of −2.80 ± 0.67 million km<sup>2</sup> °C<sup>−1</sup>. Finally, by using two long-term LWDR data sets and relationships between trends of LWDR and <i>T</i><sub>s</sub> across models, we infer an observation-constrained total boreal near-surface permafrost area decrease comprising between 39 ± 14  ×  10<sup>3</sup> and 75 ± 14  ×  10<sup>3</sup> km<sup>2</sup> yr<sup>−1</sup> from 1960 to 2000. This corresponds to 9–18 % degradation of the current permafrost area.
first_indexed 2024-12-21T19:30:10Z
format Article
id doaj.art-f596bdf8d6b74650ac9b35db103c6bcb
institution Directory Open Access Journal
issn 1994-0416
1994-0424
language English
last_indexed 2024-12-21T19:30:10Z
publishDate 2016-01-01
publisher Copernicus Publications
record_format Article
series The Cryosphere
spelling doaj.art-f596bdf8d6b74650ac9b35db103c6bcb2022-12-21T18:52:44ZengCopernicus PublicationsThe Cryosphere1994-04161994-04242016-01-0110117919210.5194/tc-10-179-2016Simulated high-latitude soil thermal dynamics during the past 4 decadesS. Peng0P. Ciais1G. Krinner2T. Wang3I. Gouttevin4A. D. McGuire5D. Lawrence6E. Burke7X. Chen8B. Decharme9C. Koven10A. MacDougall11A. Rinke12K. Saito13W. Zhang14R. Alkama15T. J. Bohn16C. Delire17T. Hajima18D. Ji19D. P. Lettenmaier20P. A. Miller21J. C. Moore22B. Smith23T. Sueyoshi24UJF–Grenoble 1/CNRS, Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE), 38041 Grenoble, FranceLaboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA-CNRS-UVSQ, 91191 Gif-sur-Yvette, FranceUJF–Grenoble 1/CNRS, Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE), 38041 Grenoble, FranceUJF–Grenoble 1/CNRS, Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE), 38041 Grenoble, FranceUJF–Grenoble 1/CNRS, Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE), 38041 Grenoble, FranceUS Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit, University of Alaska Fairbanks, Fairbanks, AK, USANational Center for Atmospheric Research, Boulder, CO, USAMet Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UKDepartment of Civil and Environmental Engineering, University of Washington, Seattle, WA, USACNRM-GAME, Unitémixte de recherche CNRS/Meteo-France (UMR 3589), 42 avCoriolis, 31057 Toulouse CEDEX, FranceLawrence Berkeley National Laboratory, Berkeley, CA, USASchool of Earth and Ocean Sciences, University of Victoria, Victoria, BC, CanadaCollege of Global Change and Earth System Science, Beijing Normal University, Beijing, ChinaResearch Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa, JapanDepartment of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, 223 62 Lund, SwedenCNRM-GAME, Unitémixte de recherche CNRS/Meteo-France (UMR 3589), 42 avCoriolis, 31057 Toulouse CEDEX, FranceSchool of Earth and Space Exploration, Arizona State University, Tempe, AZ, USACNRM-GAME, Unitémixte de recherche CNRS/Meteo-France (UMR 3589), 42 avCoriolis, 31057 Toulouse CEDEX, FranceResearch Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa, JapanCollege of Global Change and Earth System Science, Beijing Normal University, Beijing, ChinaDepartment of Civil and Environmental Engineering, University of Washington, Seattle, WA, USADepartment of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, 223 62 Lund, SwedenCollege of Global Change and Earth System Science, Beijing Normal University, Beijing, ChinaDepartment of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, 223 62 Lund, SwedenNational Institute of Polar Research, Tachikawa, Tokyo, JapanSoil temperature (<i>T</i><sub>s</sub>) change is a key indicator of the dynamics of permafrost. On seasonal and interannual timescales, the variability of <i>T</i><sub>s</sub> determines the active-layer depth, which regulates hydrological soil properties and biogeochemical processes. On the multi-decadal scale, increasing <i>T</i><sub>s</sub> not only drives permafrost thaw/retreat but can also trigger and accelerate the decomposition of soil organic carbon. The magnitude of permafrost carbon feedbacks is thus closely linked to the rate of change of soil thermal regimes. In this study, we used nine process-based ecosystem models with permafrost processes, all forced by different observation-based climate forcing during the period 1960–2000, to characterize the warming rate of <i>T</i><sub>s</sub> in permafrost regions. There is a large spread of <i>T</i><sub>s</sub> trends at 20 cm depth across the models, with trend values ranging from 0.010 ± 0.003 to 0.031 ± 0.005 °C yr<sup>−1</sup>. Most models show smaller increase in <i>T</i><sub>s</sub> with increasing depth. Air temperature (<i>T</i>sub>a</sub>) and longwave downward radiation (LWDR) are the main drivers of <i>T</i><sub>s</sub> trends, but their relative contributions differ amongst the models. Different trends of LWDR used in the forcing of models can explain 61 % of their differences in <i>T</i><sub>s</sub> trends, while trends of <i>T</i><sub>a</sub> only explain 5 % of the differences in <i>T</i><sub>s</sub> trends. Uncertain climate forcing contributes a larger uncertainty in <i>T</i><sub>s</sub> trends (0.021 ± 0.008 °C yr<sup>−1</sup>, mean ± standard deviation) than the uncertainty of model structure (0.012 ± 0.001 °C yr<sup>−1</sup>), diagnosed from the range of response between different models, normalized to the same forcing. In addition, the loss rate of near-surface permafrost area, defined as total area where the maximum seasonal active-layer thickness (ALT) is less than 3 m loss rate, is found to be significantly correlated with the magnitude of the trends of <i>T</i><sub>s</sub> at 1 m depth across the models (<i>R</i> = −0.85, <i>P</i> = 0.003), but not with the initial total near-surface permafrost area (<i>R</i> = −0.30, <i>P</i> = 0.438). The sensitivity of the total boreal near-surface permafrost area to <i>T</i><sub>s</sub> at 1 m is estimated to be of −2.80 ± 0.67 million km<sup>2</sup> °C<sup>−1</sup>. Finally, by using two long-term LWDR data sets and relationships between trends of LWDR and <i>T</i><sub>s</sub> across models, we infer an observation-constrained total boreal near-surface permafrost area decrease comprising between 39 ± 14  ×  10<sup>3</sup> and 75 ± 14  ×  10<sup>3</sup> km<sup>2</sup> yr<sup>−1</sup> from 1960 to 2000. This corresponds to 9–18 % degradation of the current permafrost area.http://www.the-cryosphere.net/10/179/2016/tc-10-179-2016.pdf
spellingShingle S. Peng
P. Ciais
G. Krinner
T. Wang
I. Gouttevin
A. D. McGuire
D. Lawrence
E. Burke
X. Chen
B. Decharme
C. Koven
A. MacDougall
A. Rinke
K. Saito
W. Zhang
R. Alkama
T. J. Bohn
C. Delire
T. Hajima
D. Ji
D. P. Lettenmaier
P. A. Miller
J. C. Moore
B. Smith
T. Sueyoshi
Simulated high-latitude soil thermal dynamics during the past 4 decades
The Cryosphere
title Simulated high-latitude soil thermal dynamics during the past 4 decades
title_full Simulated high-latitude soil thermal dynamics during the past 4 decades
title_fullStr Simulated high-latitude soil thermal dynamics during the past 4 decades
title_full_unstemmed Simulated high-latitude soil thermal dynamics during the past 4 decades
title_short Simulated high-latitude soil thermal dynamics during the past 4 decades
title_sort simulated high latitude soil thermal dynamics during the past 4 decades
url http://www.the-cryosphere.net/10/179/2016/tc-10-179-2016.pdf
work_keys_str_mv AT speng simulatedhighlatitudesoilthermaldynamicsduringthepast4decades
AT pciais simulatedhighlatitudesoilthermaldynamicsduringthepast4decades
AT gkrinner simulatedhighlatitudesoilthermaldynamicsduringthepast4decades
AT twang simulatedhighlatitudesoilthermaldynamicsduringthepast4decades
AT igouttevin simulatedhighlatitudesoilthermaldynamicsduringthepast4decades
AT admcguire simulatedhighlatitudesoilthermaldynamicsduringthepast4decades
AT dlawrence simulatedhighlatitudesoilthermaldynamicsduringthepast4decades
AT eburke simulatedhighlatitudesoilthermaldynamicsduringthepast4decades
AT xchen simulatedhighlatitudesoilthermaldynamicsduringthepast4decades
AT bdecharme simulatedhighlatitudesoilthermaldynamicsduringthepast4decades
AT ckoven simulatedhighlatitudesoilthermaldynamicsduringthepast4decades
AT amacdougall simulatedhighlatitudesoilthermaldynamicsduringthepast4decades
AT arinke simulatedhighlatitudesoilthermaldynamicsduringthepast4decades
AT ksaito simulatedhighlatitudesoilthermaldynamicsduringthepast4decades
AT wzhang simulatedhighlatitudesoilthermaldynamicsduringthepast4decades
AT ralkama simulatedhighlatitudesoilthermaldynamicsduringthepast4decades
AT tjbohn simulatedhighlatitudesoilthermaldynamicsduringthepast4decades
AT cdelire simulatedhighlatitudesoilthermaldynamicsduringthepast4decades
AT thajima simulatedhighlatitudesoilthermaldynamicsduringthepast4decades
AT dji simulatedhighlatitudesoilthermaldynamicsduringthepast4decades
AT dplettenmaier simulatedhighlatitudesoilthermaldynamicsduringthepast4decades
AT pamiller simulatedhighlatitudesoilthermaldynamicsduringthepast4decades
AT jcmoore simulatedhighlatitudesoilthermaldynamicsduringthepast4decades
AT bsmith simulatedhighlatitudesoilthermaldynamicsduringthepast4decades
AT tsueyoshi simulatedhighlatitudesoilthermaldynamicsduringthepast4decades