An Explicit–Implicit Spectral Element Scheme for the Nonlinear Space Fractional Schrödinger Equation

In this paper, we solve the space fractional nonlinear Schrödinger equation (SFNSE) by developing an explicit–implicit spectral element scheme, which is formulated based on the Legendre spectral element approximation in space and the Crank–Nicolson leap frog (CNLF) difference discretization in time....

Full description

Bibliographic Details
Main Authors: Zeting Liu, Baoli Yin, Yang Liu
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/7/9/654
Description
Summary:In this paper, we solve the space fractional nonlinear Schrödinger equation (SFNSE) by developing an explicit–implicit spectral element scheme, which is formulated based on the Legendre spectral element approximation in space and the Crank–Nicolson leap frog (CNLF) difference discretization in time. Both mass and energy conservative properties are discussed for the spectral element scheme. Numerical stability and convergence of the scheme are proved. Numerical experiments are performed to confirm the high accuracy and efficiency of the proposed numerical scheme.
ISSN:2504-3110