Systematic induced resistance in Solanum lycopersicum (L.) against vascular wilt pathogen (Fusarium oxysporum f. sp. lycopersici) by Citrullus colocynthis and Trichoderma viride.

The antifungal effects of Citrullus colocynthis extract (Hexane, chloroform, methanol, and water) were tested in vitro on Fusarium oxysporum f. sp. lycopersici (Sacc.) W. C. Snyder & H. N. Hans (FOL), the causal agent of Fusarium wilt. Of these, methanol and water extract at 10% showed the highe...

Full description

Bibliographic Details
Main Authors: Athirstam Ponsankar, Sengottayan Senthil-Nathan, Prabhakaran Vasantha-Srinivasan, Raghuraman Pandiyan, Sengodan Karthi, Kandaswamy Kalaivani, Muthiah Chellappandian, Radhakrishnan Narayanaswamy, Annamalai Thanigaivel, Krutmuang Patcharin, Shahid Mahboob, Khalid Abdullah Al-Ghanim
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2023-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0278616
Description
Summary:The antifungal effects of Citrullus colocynthis extract (Hexane, chloroform, methanol, and water) were tested in vitro on Fusarium oxysporum f. sp. lycopersici (Sacc.) W. C. Snyder & H. N. Hans (FOL), the causal agent of Fusarium wilt. Of these, methanol and water extract at 10% showed the highest inhibition of mycelial growth of FOL by 12.32 and 23.61 mm respectively. The antifungal compounds were identified through Fourier transform infrared (FT-IR) spectroscopy and gas chromatography-mass spectroscopy (GC-MS). The methanol extract was compatible with the biocontrol agent Trichoderma viride. The antagonistic fungi were mass-cultured under laboratory conditions using sorghum seeds. Both T. viride and C. colocynthis methanol extract was also tested alone and together against FOL under both in vitro and in vivo conditions. The combination of T. viride and C. colocynthis showed the highest percentage of antifungal activity (82.92%) against FOL under in vitro conditions. This study revealed that induced systemic resistance (ISR) in enhancing the disease resistance in tomato plants against Fusarium wilt disease. The combined treatment of T. viride and C. colocynthis significantly reduced the disease incidence and index by 21.92 and 27.02% in greenhouse conditions, respectively. Further, the induction of defense enzymes, such as peroxidase (PO), polyphenol oxidase (PPO), β-1,3-glucanase, and chitinase were studied. The accumulation of defense enzyme was greater in plants treated with a combination of T. viride and C. colocynthis compared to the control. Reduction of wilt disease in tomato plants due to the involvement of defense-related enzymes is presumed through this experiment.
ISSN:1932-6203