Formation of highly oxygenated organic molecules from the oxidation of limonene by OH radical: significant contribution of H-abstraction pathway

<p><span id="page7298"/>Highly oxygenated organic molecules (HOMs) play a pivotal role in the formation of secondary organic aerosol (SOA). Therefore, the distribution and yields of HOMs are fundamental to understand their fate and chemical evolution in the atmosphere, and it i...

Full description

Bibliographic Details
Main Authors: H. Luo, L. Vereecken, H. Shen, S. Kang, I. Pullinen, M. Hallquist, H. Fuchs, A. Wahner, A. Kiendler-Scharr, T. F. Mentel, D. Zhao
Format: Article
Language:English
Published: Copernicus Publications 2023-07-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/23/7297/2023/acp-23-7297-2023.pdf
_version_ 1827908883272695808
author H. Luo
H. Luo
L. Vereecken
H. Shen
H. Shen
S. Kang
I. Pullinen
I. Pullinen
M. Hallquist
H. Fuchs
H. Fuchs
A. Wahner
A. Kiendler-Scharr
T. F. Mentel
D. Zhao
D. Zhao
D. Zhao
D. Zhao
D. Zhao
author_facet H. Luo
H. Luo
L. Vereecken
H. Shen
H. Shen
S. Kang
I. Pullinen
I. Pullinen
M. Hallquist
H. Fuchs
H. Fuchs
A. Wahner
A. Kiendler-Scharr
T. F. Mentel
D. Zhao
D. Zhao
D. Zhao
D. Zhao
D. Zhao
author_sort H. Luo
collection DOAJ
description <p><span id="page7298"/>Highly oxygenated organic molecules (HOMs) play a pivotal role in the formation of secondary organic aerosol (SOA). Therefore, the distribution and yields of HOMs are fundamental to understand their fate and chemical evolution in the atmosphere, and it is conducive to ultimately assess the impact of SOA on air quality and climate change. In this study, gas-phase HOMs formed from the reaction of limonene with OH radicals in photooxidation were investigated with SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction chamber), using a time-of-flight chemical ionization mass spectrometer with nitrate reagent ion (NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="5c4cefaf8b78d41c1ce2f2ef151f712f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-7297-2023-ie00001.svg" width="9pt" height="16pt" src="acp-23-7297-2023-ie00001.png"/></svg:svg></span></span>-CIMS). A large number of HOMs, including monomers (C<span class="inline-formula"><sub>9–10</sub></span>) and dimers (C<span class="inline-formula"><sub>17–20</sub></span>), were detected and classified into various families. Both closed-shell products and open-shell peroxy radicals (RO<span class="inline-formula"><sub>2</sub></span>) were identified under low NO (0.06–0.1 ppb) and high NO conditions (17 ppb). C<span class="inline-formula"><sub>10</sub></span> monomers are the most abundant HOM products and account for over 80 % total HOMs. Closed-shell C<span class="inline-formula"><sub>10</sub></span> monomers were formed from a two peroxy radical family, C<span class="inline-formula"><sub>10</sub></span>H<span class="inline-formula"><sub>15</sub></span>O<span class="inline-formula"><sub><i>x</i></sub><span class="Radical">⚫</span></span> (<span class="inline-formula"><i>x</i>=6</span>–15) and C<span class="inline-formula"><sub>10</sub></span>H<span class="inline-formula"><sub>17</sub></span>O<span class="inline-formula"><sub><i>x</i></sub><span class="Radical">⚫</span></span> (<span class="inline-formula"><i>x</i>=6</span>–15), and their respective termination reactions with NO, RO<span class="inline-formula"><sub>2</sub></span>, and HO<span class="inline-formula"><sub>2</sub></span>. While C<span class="inline-formula"><sub>10</sub></span>H<span class="inline-formula"><sub>17</sub></span>O<span class="inline-formula"><sub><i>x</i></sub><span class="Radical">⚫</span></span> is likely formed by OH addition to C<span class="inline-formula"><sub>10</sub></span>H<span class="inline-formula"><sub>16</sub></span>, the dominant initial step of limonene plus OH, C<span class="inline-formula"><sub>10</sub></span>H<span class="inline-formula"><sub>15</sub></span>O<span class="inline-formula"><sub><i>x</i></sub><span class="Radical">⚫</span></span>, is likely formed via H abstraction by OH. C<span class="inline-formula"><sub>10</sub></span>H<span class="inline-formula"><sub>15</sub></span>O<span class="inline-formula"><sub><i>x</i></sub><span class="Radical">⚫</span></span> and related products contributed 41 % and 42 % of C<span class="inline-formula"><sub>10</sub></span> HOMs at low and high NO, demonstrating that the H-abstraction pathways play a significant role in HOM formation in the reaction of limonene plus OH. Combining theoretical kinetic calculations, structure–activity relationships (SARs), data from the literature, and the observed RO<span class="inline-formula"><sub>2</sub></span> intensities, we proposed tentative mechanisms of HOM formation from both pathways. We further estimated the molar yields of HOMs to be <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M30" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mn mathvariant="normal">1.97</mn><mrow><mo>-</mo><mn mathvariant="normal">1.06</mn></mrow><mrow><mo>+</mo><mn mathvariant="normal">2.52</mn></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="45pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="da752d513fc8f2a34eaf00a993e91cb1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-7297-2023-ie00002.svg" width="45pt" height="17pt" src="acp-23-7297-2023-ie00002.png"/></svg:svg></span></span> % and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M31" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mn mathvariant="normal">0.29</mn><mrow><mo>-</mo><mn mathvariant="normal">0.16</mn></mrow><mrow><mo>+</mo><mn mathvariant="normal">0.38</mn></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="45pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="3d7674a78a03c20427b3b2b5bfb01ec0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-7297-2023-ie00003.svg" width="45pt" height="17pt" src="acp-23-7297-2023-ie00003.png"/></svg:svg></span></span> % at low and high NO, respectively. Our study highlights the importance of H abstraction by OH and provides the yield and tentative pathways in the OH oxidation of limonene to simulate the HOM formation and assess the role of HOMs in SOA formation.</p>
first_indexed 2024-03-13T01:28:39Z
format Article
id doaj.art-f5c625c6feb44fc6bccb119a1f7147a7
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-03-13T01:28:39Z
publishDate 2023-07-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-f5c625c6feb44fc6bccb119a1f7147a72023-07-04T10:25:14ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242023-07-01237297731910.5194/acp-23-7297-2023Formation of highly oxygenated organic molecules from the oxidation of limonene by OH radical: significant contribution of H-abstraction pathwayH. Luo0H. Luo1L. Vereecken2H. Shen3H. Shen4S. Kang5I. Pullinen6I. Pullinen7M. Hallquist8H. Fuchs9H. Fuchs10A. Wahner11A. Kiendler-Scharr12T. F. Mentel13D. Zhao14D. Zhao15D. Zhao16D. Zhao17D. Zhao18Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, ChinaNational Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, ChinaInstitute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, 52425 Jülich, GermanyDepartment of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, ChinaNational Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, ChinaInstitute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, 52425 Jülich, GermanyInstitute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, 52425 Jülich, Germanynow at: Department of Applied Physics, University of Eastern Finland, 70210 Kuopio, FinlandDepartment of Chemistry and Molecular biology, University of Gothenburg, 41258 Gothenburg, SwedenInstitute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, 52425 Jülich, GermanyFachgruppe Physik, Universität zu Köln, 50932 Cologne, GermanyInstitute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, 52425 Jülich, GermanyInstitute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, 52425 Jülich, GermanyInstitute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, 52425 Jülich, GermanyDepartment of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, ChinaNational Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, ChinaShanghai Frontiers Science Center of Atmosphere–Ocean Interaction, Fudan University, Shanghai 200438, ChinaInstitute of Eco-Chongming (IEC), 20 Cuiniao Rd., Chongming, Shanghai 202162, ChinaCMA-FDU Joint Laboratory of Marine Meteorology, Fudan University, Shanghai 200438, China<p><span id="page7298"/>Highly oxygenated organic molecules (HOMs) play a pivotal role in the formation of secondary organic aerosol (SOA). Therefore, the distribution and yields of HOMs are fundamental to understand their fate and chemical evolution in the atmosphere, and it is conducive to ultimately assess the impact of SOA on air quality and climate change. In this study, gas-phase HOMs formed from the reaction of limonene with OH radicals in photooxidation were investigated with SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction chamber), using a time-of-flight chemical ionization mass spectrometer with nitrate reagent ion (NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="5c4cefaf8b78d41c1ce2f2ef151f712f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-7297-2023-ie00001.svg" width="9pt" height="16pt" src="acp-23-7297-2023-ie00001.png"/></svg:svg></span></span>-CIMS). A large number of HOMs, including monomers (C<span class="inline-formula"><sub>9–10</sub></span>) and dimers (C<span class="inline-formula"><sub>17–20</sub></span>), were detected and classified into various families. Both closed-shell products and open-shell peroxy radicals (RO<span class="inline-formula"><sub>2</sub></span>) were identified under low NO (0.06–0.1 ppb) and high NO conditions (17 ppb). C<span class="inline-formula"><sub>10</sub></span> monomers are the most abundant HOM products and account for over 80 % total HOMs. Closed-shell C<span class="inline-formula"><sub>10</sub></span> monomers were formed from a two peroxy radical family, C<span class="inline-formula"><sub>10</sub></span>H<span class="inline-formula"><sub>15</sub></span>O<span class="inline-formula"><sub><i>x</i></sub><span class="Radical">⚫</span></span> (<span class="inline-formula"><i>x</i>=6</span>–15) and C<span class="inline-formula"><sub>10</sub></span>H<span class="inline-formula"><sub>17</sub></span>O<span class="inline-formula"><sub><i>x</i></sub><span class="Radical">⚫</span></span> (<span class="inline-formula"><i>x</i>=6</span>–15), and their respective termination reactions with NO, RO<span class="inline-formula"><sub>2</sub></span>, and HO<span class="inline-formula"><sub>2</sub></span>. While C<span class="inline-formula"><sub>10</sub></span>H<span class="inline-formula"><sub>17</sub></span>O<span class="inline-formula"><sub><i>x</i></sub><span class="Radical">⚫</span></span> is likely formed by OH addition to C<span class="inline-formula"><sub>10</sub></span>H<span class="inline-formula"><sub>16</sub></span>, the dominant initial step of limonene plus OH, C<span class="inline-formula"><sub>10</sub></span>H<span class="inline-formula"><sub>15</sub></span>O<span class="inline-formula"><sub><i>x</i></sub><span class="Radical">⚫</span></span>, is likely formed via H abstraction by OH. C<span class="inline-formula"><sub>10</sub></span>H<span class="inline-formula"><sub>15</sub></span>O<span class="inline-formula"><sub><i>x</i></sub><span class="Radical">⚫</span></span> and related products contributed 41 % and 42 % of C<span class="inline-formula"><sub>10</sub></span> HOMs at low and high NO, demonstrating that the H-abstraction pathways play a significant role in HOM formation in the reaction of limonene plus OH. Combining theoretical kinetic calculations, structure–activity relationships (SARs), data from the literature, and the observed RO<span class="inline-formula"><sub>2</sub></span> intensities, we proposed tentative mechanisms of HOM formation from both pathways. We further estimated the molar yields of HOMs to be <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M30" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mn mathvariant="normal">1.97</mn><mrow><mo>-</mo><mn mathvariant="normal">1.06</mn></mrow><mrow><mo>+</mo><mn mathvariant="normal">2.52</mn></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="45pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="da752d513fc8f2a34eaf00a993e91cb1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-7297-2023-ie00002.svg" width="45pt" height="17pt" src="acp-23-7297-2023-ie00002.png"/></svg:svg></span></span> % and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M31" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mn mathvariant="normal">0.29</mn><mrow><mo>-</mo><mn mathvariant="normal">0.16</mn></mrow><mrow><mo>+</mo><mn mathvariant="normal">0.38</mn></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="45pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="3d7674a78a03c20427b3b2b5bfb01ec0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-7297-2023-ie00003.svg" width="45pt" height="17pt" src="acp-23-7297-2023-ie00003.png"/></svg:svg></span></span> % at low and high NO, respectively. Our study highlights the importance of H abstraction by OH and provides the yield and tentative pathways in the OH oxidation of limonene to simulate the HOM formation and assess the role of HOMs in SOA formation.</p>https://acp.copernicus.org/articles/23/7297/2023/acp-23-7297-2023.pdf
spellingShingle H. Luo
H. Luo
L. Vereecken
H. Shen
H. Shen
S. Kang
I. Pullinen
I. Pullinen
M. Hallquist
H. Fuchs
H. Fuchs
A. Wahner
A. Kiendler-Scharr
T. F. Mentel
D. Zhao
D. Zhao
D. Zhao
D. Zhao
D. Zhao
Formation of highly oxygenated organic molecules from the oxidation of limonene by OH radical: significant contribution of H-abstraction pathway
Atmospheric Chemistry and Physics
title Formation of highly oxygenated organic molecules from the oxidation of limonene by OH radical: significant contribution of H-abstraction pathway
title_full Formation of highly oxygenated organic molecules from the oxidation of limonene by OH radical: significant contribution of H-abstraction pathway
title_fullStr Formation of highly oxygenated organic molecules from the oxidation of limonene by OH radical: significant contribution of H-abstraction pathway
title_full_unstemmed Formation of highly oxygenated organic molecules from the oxidation of limonene by OH radical: significant contribution of H-abstraction pathway
title_short Formation of highly oxygenated organic molecules from the oxidation of limonene by OH radical: significant contribution of H-abstraction pathway
title_sort formation of highly oxygenated organic molecules from the oxidation of limonene by oh radical significant contribution of h abstraction pathway
url https://acp.copernicus.org/articles/23/7297/2023/acp-23-7297-2023.pdf
work_keys_str_mv AT hluo formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway
AT hluo formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway
AT lvereecken formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway
AT hshen formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway
AT hshen formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway
AT skang formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway
AT ipullinen formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway
AT ipullinen formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway
AT mhallquist formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway
AT hfuchs formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway
AT hfuchs formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway
AT awahner formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway
AT akiendlerscharr formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway
AT tfmentel formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway
AT dzhao formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway
AT dzhao formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway
AT dzhao formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway
AT dzhao formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway
AT dzhao formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway