Formation of highly oxygenated organic molecules from the oxidation of limonene by OH radical: significant contribution of H-abstraction pathway
<p><span id="page7298"/>Highly oxygenated organic molecules (HOMs) play a pivotal role in the formation of secondary organic aerosol (SOA). Therefore, the distribution and yields of HOMs are fundamental to understand their fate and chemical evolution in the atmosphere, and it i...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2023-07-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://acp.copernicus.org/articles/23/7297/2023/acp-23-7297-2023.pdf |
_version_ | 1827908883272695808 |
---|---|
author | H. Luo H. Luo L. Vereecken H. Shen H. Shen S. Kang I. Pullinen I. Pullinen M. Hallquist H. Fuchs H. Fuchs A. Wahner A. Kiendler-Scharr T. F. Mentel D. Zhao D. Zhao D. Zhao D. Zhao D. Zhao |
author_facet | H. Luo H. Luo L. Vereecken H. Shen H. Shen S. Kang I. Pullinen I. Pullinen M. Hallquist H. Fuchs H. Fuchs A. Wahner A. Kiendler-Scharr T. F. Mentel D. Zhao D. Zhao D. Zhao D. Zhao D. Zhao |
author_sort | H. Luo |
collection | DOAJ |
description | <p><span id="page7298"/>Highly oxygenated organic molecules (HOMs) play a pivotal role in the formation of secondary organic aerosol (SOA). Therefore, the distribution and yields of HOMs are fundamental to understand their fate and chemical evolution in the atmosphere, and it is conducive to ultimately assess the impact of SOA on air quality and climate change. In this study, gas-phase HOMs formed from the reaction of limonene with OH radicals in photooxidation were investigated with SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction chamber), using a time-of-flight chemical ionization mass spectrometer with nitrate reagent ion (NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="5c4cefaf8b78d41c1ce2f2ef151f712f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-7297-2023-ie00001.svg" width="9pt" height="16pt" src="acp-23-7297-2023-ie00001.png"/></svg:svg></span></span>-CIMS). A large number of HOMs, including monomers (C<span class="inline-formula"><sub>9–10</sub></span>) and dimers (C<span class="inline-formula"><sub>17–20</sub></span>), were detected and classified into various families. Both closed-shell products and open-shell peroxy radicals (RO<span class="inline-formula"><sub>2</sub></span>) were identified under low NO (0.06–0.1 ppb) and high NO conditions (17 ppb). C<span class="inline-formula"><sub>10</sub></span> monomers are the most abundant HOM products and account for over 80 % total HOMs. Closed-shell C<span class="inline-formula"><sub>10</sub></span> monomers were formed from a two peroxy radical family, C<span class="inline-formula"><sub>10</sub></span>H<span class="inline-formula"><sub>15</sub></span>O<span class="inline-formula"><sub><i>x</i></sub><span class="Radical">⚫</span></span> (<span class="inline-formula"><i>x</i>=6</span>–15) and
C<span class="inline-formula"><sub>10</sub></span>H<span class="inline-formula"><sub>17</sub></span>O<span class="inline-formula"><sub><i>x</i></sub><span class="Radical">⚫</span></span> (<span class="inline-formula"><i>x</i>=6</span>–15), and their respective
termination reactions with NO, RO<span class="inline-formula"><sub>2</sub></span>, and HO<span class="inline-formula"><sub>2</sub></span>. While
C<span class="inline-formula"><sub>10</sub></span>H<span class="inline-formula"><sub>17</sub></span>O<span class="inline-formula"><sub><i>x</i></sub><span class="Radical">⚫</span></span> is likely formed by OH addition to
C<span class="inline-formula"><sub>10</sub></span>H<span class="inline-formula"><sub>16</sub></span>, the dominant initial step of limonene plus OH,
C<span class="inline-formula"><sub>10</sub></span>H<span class="inline-formula"><sub>15</sub></span>O<span class="inline-formula"><sub><i>x</i></sub><span class="Radical">⚫</span></span>, is likely formed via H abstraction by OH. C<span class="inline-formula"><sub>10</sub></span>H<span class="inline-formula"><sub>15</sub></span>O<span class="inline-formula"><sub><i>x</i></sub><span class="Radical">⚫</span></span> and related products contributed 41 % and 42 % of C<span class="inline-formula"><sub>10</sub></span> HOMs at low and high NO, demonstrating that the H-abstraction pathways play a significant role in HOM formation in the reaction of limonene plus OH. Combining theoretical kinetic calculations, structure–activity relationships (SARs), data from the literature, and the observed RO<span class="inline-formula"><sub>2</sub></span> intensities, we proposed tentative mechanisms of HOM formation from both pathways. We further estimated the molar yields of HOMs to be <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M30" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mn mathvariant="normal">1.97</mn><mrow><mo>-</mo><mn mathvariant="normal">1.06</mn></mrow><mrow><mo>+</mo><mn mathvariant="normal">2.52</mn></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="45pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="da752d513fc8f2a34eaf00a993e91cb1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-7297-2023-ie00002.svg" width="45pt" height="17pt" src="acp-23-7297-2023-ie00002.png"/></svg:svg></span></span> % and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M31" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mn mathvariant="normal">0.29</mn><mrow><mo>-</mo><mn mathvariant="normal">0.16</mn></mrow><mrow><mo>+</mo><mn mathvariant="normal">0.38</mn></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="45pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="3d7674a78a03c20427b3b2b5bfb01ec0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-7297-2023-ie00003.svg" width="45pt" height="17pt" src="acp-23-7297-2023-ie00003.png"/></svg:svg></span></span> % at low and high NO, respectively. Our study highlights the importance of H abstraction by OH and provides the yield and tentative pathways in the OH oxidation of limonene to simulate the HOM formation and assess the role of HOMs in SOA formation.</p> |
first_indexed | 2024-03-13T01:28:39Z |
format | Article |
id | doaj.art-f5c625c6feb44fc6bccb119a1f7147a7 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-03-13T01:28:39Z |
publishDate | 2023-07-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-f5c625c6feb44fc6bccb119a1f7147a72023-07-04T10:25:14ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242023-07-01237297731910.5194/acp-23-7297-2023Formation of highly oxygenated organic molecules from the oxidation of limonene by OH radical: significant contribution of H-abstraction pathwayH. Luo0H. Luo1L. Vereecken2H. Shen3H. Shen4S. Kang5I. Pullinen6I. Pullinen7M. Hallquist8H. Fuchs9H. Fuchs10A. Wahner11A. Kiendler-Scharr12T. F. Mentel13D. Zhao14D. Zhao15D. Zhao16D. Zhao17D. Zhao18Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, ChinaNational Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, ChinaInstitute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, 52425 Jülich, GermanyDepartment of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, ChinaNational Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, ChinaInstitute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, 52425 Jülich, GermanyInstitute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, 52425 Jülich, Germanynow at: Department of Applied Physics, University of Eastern Finland, 70210 Kuopio, FinlandDepartment of Chemistry and Molecular biology, University of Gothenburg, 41258 Gothenburg, SwedenInstitute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, 52425 Jülich, GermanyFachgruppe Physik, Universität zu Köln, 50932 Cologne, GermanyInstitute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, 52425 Jülich, GermanyInstitute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, 52425 Jülich, GermanyInstitute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, 52425 Jülich, GermanyDepartment of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, ChinaNational Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, ChinaShanghai Frontiers Science Center of Atmosphere–Ocean Interaction, Fudan University, Shanghai 200438, ChinaInstitute of Eco-Chongming (IEC), 20 Cuiniao Rd., Chongming, Shanghai 202162, ChinaCMA-FDU Joint Laboratory of Marine Meteorology, Fudan University, Shanghai 200438, China<p><span id="page7298"/>Highly oxygenated organic molecules (HOMs) play a pivotal role in the formation of secondary organic aerosol (SOA). Therefore, the distribution and yields of HOMs are fundamental to understand their fate and chemical evolution in the atmosphere, and it is conducive to ultimately assess the impact of SOA on air quality and climate change. In this study, gas-phase HOMs formed from the reaction of limonene with OH radicals in photooxidation were investigated with SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction chamber), using a time-of-flight chemical ionization mass spectrometer with nitrate reagent ion (NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="5c4cefaf8b78d41c1ce2f2ef151f712f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-7297-2023-ie00001.svg" width="9pt" height="16pt" src="acp-23-7297-2023-ie00001.png"/></svg:svg></span></span>-CIMS). A large number of HOMs, including monomers (C<span class="inline-formula"><sub>9–10</sub></span>) and dimers (C<span class="inline-formula"><sub>17–20</sub></span>), were detected and classified into various families. Both closed-shell products and open-shell peroxy radicals (RO<span class="inline-formula"><sub>2</sub></span>) were identified under low NO (0.06–0.1 ppb) and high NO conditions (17 ppb). C<span class="inline-formula"><sub>10</sub></span> monomers are the most abundant HOM products and account for over 80 % total HOMs. Closed-shell C<span class="inline-formula"><sub>10</sub></span> monomers were formed from a two peroxy radical family, C<span class="inline-formula"><sub>10</sub></span>H<span class="inline-formula"><sub>15</sub></span>O<span class="inline-formula"><sub><i>x</i></sub><span class="Radical">⚫</span></span> (<span class="inline-formula"><i>x</i>=6</span>–15) and C<span class="inline-formula"><sub>10</sub></span>H<span class="inline-formula"><sub>17</sub></span>O<span class="inline-formula"><sub><i>x</i></sub><span class="Radical">⚫</span></span> (<span class="inline-formula"><i>x</i>=6</span>–15), and their respective termination reactions with NO, RO<span class="inline-formula"><sub>2</sub></span>, and HO<span class="inline-formula"><sub>2</sub></span>. While C<span class="inline-formula"><sub>10</sub></span>H<span class="inline-formula"><sub>17</sub></span>O<span class="inline-formula"><sub><i>x</i></sub><span class="Radical">⚫</span></span> is likely formed by OH addition to C<span class="inline-formula"><sub>10</sub></span>H<span class="inline-formula"><sub>16</sub></span>, the dominant initial step of limonene plus OH, C<span class="inline-formula"><sub>10</sub></span>H<span class="inline-formula"><sub>15</sub></span>O<span class="inline-formula"><sub><i>x</i></sub><span class="Radical">⚫</span></span>, is likely formed via H abstraction by OH. C<span class="inline-formula"><sub>10</sub></span>H<span class="inline-formula"><sub>15</sub></span>O<span class="inline-formula"><sub><i>x</i></sub><span class="Radical">⚫</span></span> and related products contributed 41 % and 42 % of C<span class="inline-formula"><sub>10</sub></span> HOMs at low and high NO, demonstrating that the H-abstraction pathways play a significant role in HOM formation in the reaction of limonene plus OH. Combining theoretical kinetic calculations, structure–activity relationships (SARs), data from the literature, and the observed RO<span class="inline-formula"><sub>2</sub></span> intensities, we proposed tentative mechanisms of HOM formation from both pathways. We further estimated the molar yields of HOMs to be <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M30" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mn mathvariant="normal">1.97</mn><mrow><mo>-</mo><mn mathvariant="normal">1.06</mn></mrow><mrow><mo>+</mo><mn mathvariant="normal">2.52</mn></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="45pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="da752d513fc8f2a34eaf00a993e91cb1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-7297-2023-ie00002.svg" width="45pt" height="17pt" src="acp-23-7297-2023-ie00002.png"/></svg:svg></span></span> % and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M31" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mn mathvariant="normal">0.29</mn><mrow><mo>-</mo><mn mathvariant="normal">0.16</mn></mrow><mrow><mo>+</mo><mn mathvariant="normal">0.38</mn></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="45pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="3d7674a78a03c20427b3b2b5bfb01ec0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-7297-2023-ie00003.svg" width="45pt" height="17pt" src="acp-23-7297-2023-ie00003.png"/></svg:svg></span></span> % at low and high NO, respectively. Our study highlights the importance of H abstraction by OH and provides the yield and tentative pathways in the OH oxidation of limonene to simulate the HOM formation and assess the role of HOMs in SOA formation.</p>https://acp.copernicus.org/articles/23/7297/2023/acp-23-7297-2023.pdf |
spellingShingle | H. Luo H. Luo L. Vereecken H. Shen H. Shen S. Kang I. Pullinen I. Pullinen M. Hallquist H. Fuchs H. Fuchs A. Wahner A. Kiendler-Scharr T. F. Mentel D. Zhao D. Zhao D. Zhao D. Zhao D. Zhao Formation of highly oxygenated organic molecules from the oxidation of limonene by OH radical: significant contribution of H-abstraction pathway Atmospheric Chemistry and Physics |
title | Formation of highly oxygenated organic molecules from the oxidation of limonene by OH radical: significant contribution of H-abstraction pathway |
title_full | Formation of highly oxygenated organic molecules from the oxidation of limonene by OH radical: significant contribution of H-abstraction pathway |
title_fullStr | Formation of highly oxygenated organic molecules from the oxidation of limonene by OH radical: significant contribution of H-abstraction pathway |
title_full_unstemmed | Formation of highly oxygenated organic molecules from the oxidation of limonene by OH radical: significant contribution of H-abstraction pathway |
title_short | Formation of highly oxygenated organic molecules from the oxidation of limonene by OH radical: significant contribution of H-abstraction pathway |
title_sort | formation of highly oxygenated organic molecules from the oxidation of limonene by oh radical significant contribution of h abstraction pathway |
url | https://acp.copernicus.org/articles/23/7297/2023/acp-23-7297-2023.pdf |
work_keys_str_mv | AT hluo formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway AT hluo formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway AT lvereecken formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway AT hshen formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway AT hshen formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway AT skang formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway AT ipullinen formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway AT ipullinen formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway AT mhallquist formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway AT hfuchs formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway AT hfuchs formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway AT awahner formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway AT akiendlerscharr formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway AT tfmentel formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway AT dzhao formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway AT dzhao formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway AT dzhao formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway AT dzhao formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway AT dzhao formationofhighlyoxygenatedorganicmoleculesfromtheoxidationoflimonenebyohradicalsignificantcontributionofhabstractionpathway |