Unravelling the Complexities of Genotype-Soil-Management Interaction for Precision Agriculture

The knowledge of interactions among crop genotypes, soil types, and crop management is essential for precision agriculture. This paper explores these interactions through the analysis of 27 years of winter wheat trials, with 276 unique varieties tested across seven distinct soil types and more than...

Full description

Bibliographic Details
Main Authors: Svend Christensen, Signe M. Jensen
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Agronomy
Subjects:
Online Access:https://www.mdpi.com/2073-4395/13/11/2727
Description
Summary:The knowledge of interactions among crop genotypes, soil types, and crop management is essential for precision agriculture. This paper explores these interactions through the analysis of 27 years of winter wheat trials, with 276 unique varieties tested across seven distinct soil types and more than 8000 plots. The study investigates how different winter wheat crop varieties respond to varying soil types and preceding crops. The findings revealed a significant interaction between variety, soil type, and preceding crop. With only a few exceptions, the highest-yielding varieties were predominantly the most recently developed. The ranking of the varieties exhibited inconsistency across the various soil types, implying that a variety yields differently when cultivated in different soil types. Furthermore, the influence of preceding crops on yield varied with soil type. This suggests that taking field-specific soil variation and the preceding crop into account during variety selection may improve the yield potential. Furthermore, the study highlights consistent yield increases due to advancements in breeding programs, with yearly increases ranging from 0.05 to 0.1 t/ha per year across all soil types. Integration of insights from genetics, soil attributes, and management practices demonstrates how farmers can increase productivity.
ISSN:2073-4395