Explaining Defects of the Universal Vacua with Black Holes-Hedgehogs and Strings

Assuming the Multiple Point Principle (MPP) as a new law of Nature, we considered the existence of the two degenerate vacua of the Universe: (a) the first Electroweak (EW) vacuum at v 1 ≈ 246 GeV—“true vacuum”, and (b) the second Planck scale &ld...

Full description

Bibliographic Details
Main Authors: C. R. Das, L. V. Laperashvili, H. B. Nielsen, B. G. Sidharth
Format: Article
Language:English
Published: MDPI AG 2019-03-01
Series:Universe
Subjects:
Online Access:http://www.mdpi.com/2218-1997/5/3/78
Description
Summary:Assuming the Multiple Point Principle (MPP) as a new law of Nature, we considered the existence of the two degenerate vacua of the Universe: (a) the first Electroweak (EW) vacuum at v 1 ≈ 246 GeV—“true vacuum”, and (b) the second Planck scale “false vacuum” at v 2 ∼ 10 18 GeV. In these vacua, we investigated different topological defects. The main aim of the paper is an investigation of the black-hole-hedgehogs configurations as defects of the false vacuum. In the framework of the f ( R ) gravity, described by the Gravi-Weak unification model, we considered a black-hole solution, which corresponds to a “hedgehog”—global monopole, that has been “swallowed” by the black-hole with mass core M B H ∼ 10 18 GeV and radius δ ∼ 10 − 21 GeV − 1 . Considering the results of the hedgehog lattice theory in the framework of the S U ( 2 ) Yang-Mills gauge-invariant theory with hedgehogs in the Wilson loops, we have used the critical value of temperature for the hedgehogs’ confinement phase ( T c ∼ 10 18 GeV). This result gave us the possibility to conclude that the SM shows a new physics (with contributions of the S U ( 2 ) -triplet Higgs bosons) at the scale ∼10 TeV. This theory predicts the stability of the EW-vacuum and the accuracy of the MPP.
ISSN:2218-1997