Anthocyanin Metabolites in Human Urine after the Intake of New Functional Beverages
Sugar intake abuse is directly related with the increase of metabolic diseases such as type 2 diabetes, obesity, and insulin resistance. Along this line, the development of new beverages using alternative sweeteners could help with combatting the pathophysiological disorders associated to the consum...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-01-01
|
Series: | Molecules |
Subjects: | |
Online Access: | https://www.mdpi.com/1420-3049/25/2/371 |
_version_ | 1818541343580880896 |
---|---|
author | Vicente Agulló Débora Villaño Cristina García-Viguera Raúl Domínguez-Perles |
author_facet | Vicente Agulló Débora Villaño Cristina García-Viguera Raúl Domínguez-Perles |
author_sort | Vicente Agulló |
collection | DOAJ |
description | Sugar intake abuse is directly related with the increase of metabolic diseases such as type 2 diabetes, obesity, and insulin resistance. Along this line, the development of new beverages using alternative sweeteners could help with combatting the pathophysiological disorders associated to the consumption of sugar. To provide evidence on this issue, in the present work, the bioavailability of anthocyanins was evaluated after the acute ingestion of a new maqui-citrus-based functional beverage rich in polyphenols, and supplemented with a range of sweeteners including sucrose (natural high caloric), stevia (natural non-caloric), and sucralose (artificial non-caloric), as an approach that would allow reducing the intake of sugars while providing bioactive phenolic compounds (anthocyanins). This approach allowed the evaluation of the maximum absorption and the diversity of metabolites excreted through urine. The beverages created were ingested by volunteers (<i>n</i> = 20) and the resulting anthocyanin metabolites in their urine were analyzed by UHPLC-ESI-MS/MS. A total of 29 degradation metabolites were detected: Caffeic acid, catechol, 3,4-dihidroxifenilacetic acid, hippuric acid, <i>trans</i>-ferulic acid, 2,4,6-trihydroxybenzaldehyde, <i>trans</i>-isoferulic acid, and vanillic acid derivatives, where peak concentrations were attained at 3.5 h after beverage intake. Sucralose was the sweetener that provided a higher bioavailability for most compounds, followed by stevia. Sucrose did not provide a remarkably higher bioavailability of any compounds in comparison with sucralose or stevia. The results propose two sweetener alternatives (sucralose and stevia) to sucrose, an overused high calorie sweetener that promotes some metabolic diseases. |
first_indexed | 2024-12-11T22:08:02Z |
format | Article |
id | doaj.art-f5ecd7b6f1c34a9583a7bcda45c0e5bc |
institution | Directory Open Access Journal |
issn | 1420-3049 |
language | English |
last_indexed | 2024-12-11T22:08:02Z |
publishDate | 2020-01-01 |
publisher | MDPI AG |
record_format | Article |
series | Molecules |
spelling | doaj.art-f5ecd7b6f1c34a9583a7bcda45c0e5bc2022-12-22T00:48:54ZengMDPI AGMolecules1420-30492020-01-0125237110.3390/molecules25020371molecules25020371Anthocyanin Metabolites in Human Urine after the Intake of New Functional BeveragesVicente Agulló0Débora Villaño1Cristina García-Viguera2Raúl Domínguez-Perles3Phytochemistry and Healthy Foods Lab. Group of Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, (CEBAS-CSIC), University Campus Espinardo 25, 30100 Murcia, SpainUniversidad Católica San Antonio de Murcia (UCAM), Department of Pharmacy, Faculty of Health Sciences, Campus de los Jerónimos, Guadalupe, 30107 Murcia, SpainPhytochemistry and Healthy Foods Lab. Group of Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, (CEBAS-CSIC), University Campus Espinardo 25, 30100 Murcia, SpainPhytochemistry and Healthy Foods Lab. Group of Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, (CEBAS-CSIC), University Campus Espinardo 25, 30100 Murcia, SpainSugar intake abuse is directly related with the increase of metabolic diseases such as type 2 diabetes, obesity, and insulin resistance. Along this line, the development of new beverages using alternative sweeteners could help with combatting the pathophysiological disorders associated to the consumption of sugar. To provide evidence on this issue, in the present work, the bioavailability of anthocyanins was evaluated after the acute ingestion of a new maqui-citrus-based functional beverage rich in polyphenols, and supplemented with a range of sweeteners including sucrose (natural high caloric), stevia (natural non-caloric), and sucralose (artificial non-caloric), as an approach that would allow reducing the intake of sugars while providing bioactive phenolic compounds (anthocyanins). This approach allowed the evaluation of the maximum absorption and the diversity of metabolites excreted through urine. The beverages created were ingested by volunteers (<i>n</i> = 20) and the resulting anthocyanin metabolites in their urine were analyzed by UHPLC-ESI-MS/MS. A total of 29 degradation metabolites were detected: Caffeic acid, catechol, 3,4-dihidroxifenilacetic acid, hippuric acid, <i>trans</i>-ferulic acid, 2,4,6-trihydroxybenzaldehyde, <i>trans</i>-isoferulic acid, and vanillic acid derivatives, where peak concentrations were attained at 3.5 h after beverage intake. Sucralose was the sweetener that provided a higher bioavailability for most compounds, followed by stevia. Sucrose did not provide a remarkably higher bioavailability of any compounds in comparison with sucralose or stevia. The results propose two sweetener alternatives (sucralose and stevia) to sucrose, an overused high calorie sweetener that promotes some metabolic diseases.https://www.mdpi.com/1420-3049/25/2/371dietary interventionmaquijuiceanthocyaninsbioavailabilityuhplc-esi-qqq-ms/ms |
spellingShingle | Vicente Agulló Débora Villaño Cristina García-Viguera Raúl Domínguez-Perles Anthocyanin Metabolites in Human Urine after the Intake of New Functional Beverages Molecules dietary intervention maqui juice anthocyanins bioavailability uhplc-esi-qqq-ms/ms |
title | Anthocyanin Metabolites in Human Urine after the Intake of New Functional Beverages |
title_full | Anthocyanin Metabolites in Human Urine after the Intake of New Functional Beverages |
title_fullStr | Anthocyanin Metabolites in Human Urine after the Intake of New Functional Beverages |
title_full_unstemmed | Anthocyanin Metabolites in Human Urine after the Intake of New Functional Beverages |
title_short | Anthocyanin Metabolites in Human Urine after the Intake of New Functional Beverages |
title_sort | anthocyanin metabolites in human urine after the intake of new functional beverages |
topic | dietary intervention maqui juice anthocyanins bioavailability uhplc-esi-qqq-ms/ms |
url | https://www.mdpi.com/1420-3049/25/2/371 |
work_keys_str_mv | AT vicenteagullo anthocyaninmetabolitesinhumanurineaftertheintakeofnewfunctionalbeverages AT deboravillano anthocyaninmetabolitesinhumanurineaftertheintakeofnewfunctionalbeverages AT cristinagarciaviguera anthocyaninmetabolitesinhumanurineaftertheintakeofnewfunctionalbeverages AT rauldominguezperles anthocyaninmetabolitesinhumanurineaftertheintakeofnewfunctionalbeverages |