Gut Taste Stimulants Alter Brain Activity in Areas Related to Working Memory: a Pilot Study

Background/Aims: Taste perception is one of the most important primary oral reinforcers, driving nutrient and energy intake as well as toxin avoidance. Taste receptors in the gastrointestinal tract might as well impact appetitive or aversive behavior and thus influence learning tasks and a close rel...

Full description

Bibliographic Details
Main Authors: Anne Christin Meyer-Gerspach, Claudia Suenderhauf, Lukas Bereiter, Davide Zanchi, Christoph Beglinger, Stefan Borgwardt, Bettina K. Wölnerhanssen
Format: Article
Language:English
Published: Cell Physiol Biochem Press GmbH & Co KG 2016-07-01
Series:Neurosignals
Subjects:
Online Access:http://prod.karger.com/Article/FullText/442612
Description
Summary:Background/Aims: Taste perception is one of the most important primary oral reinforcers, driving nutrient and energy intake as well as toxin avoidance. Taste receptors in the gastrointestinal tract might as well impact appetitive or aversive behavior and thus influence learning tasks and a close relation of neural taste processing and working memory networks seems plausible. Methods: In the present pilot study, we determined the effects of five taste qualities “bitter” (quinine), “sweet” (glucose), “sour” (citric acid), “salty” (NaCl) and “umami” (monosodium glutamate, MSG) on working memory processing using functional MRI and their effect on plasma insulin and glucose levels. On six separate occasions, subjects received one of the following test substances dissolved in 200 mL tap water via a nasogastric tube (to circumvent the oral cavity): 1) 2g citric acid corresponding to 52 mM, 2) 2g NaCl; 171 mM, 3) 0.017g quinine; 0.26 mM, 4) 1g monosodium glutamate; 30 mM, 5) 25g glucose; 694 mM and 6) 200 mL tap water (placebo). Results: The taste qualities “bitter” and “umami” significantly altered brain activation patterns in the primary gustatory cortex as well as in subcortical structures, previously reported to be involved in emotional learning and memory. In contrast, glucose did not reveal any statistically significant brain activation difference. Working memory performance was not different over the six treatments. Plasma insulin and glucose levels were not affected by the different taste substances (MSG, quinine, NaCl and citric acid). Conclusions: in this pilot trial, we demonstrate that acute intragastric administration of different taste substances does not affect working memory performance in humans. However, “umami” and “bitter” have effects on brain areas involved in neural working memory, overpowering the effects of “sweet”, “salty” and “sour” reception.
ISSN:1424-862X
1424-8638