A deep learning approach to photo–identification demonstrates high performance on two dozen cetacean species

Abstract Researchers can investigate many aspects of animal ecology through noninvasive photo–identification. Photo–identification is becoming more efficient as matching individuals between photos is increasingly automated. However, the convolutional neural network models that have facilitated this...

Full description

Bibliographic Details
Main Authors: Philip T. Patton, Ted Cheeseman, Kenshin Abe, Taiki Yamaguchi, Walter Reade, Ken Southerland, Addison Howard, Erin M. Oleson, Jason B. Allen, Erin Ashe, Aline Athayde, Robin W. Baird, Charla Basran, Elsa Cabrera, John Calambokidis, Júlio Cardoso, Emma L. Carroll, Amina Cesario, Barbara J. Cheney, Enrico Corsi, Jens Currie, John W. Durban, Erin A. Falcone, Holly Fearnbach, Kiirsten Flynn, Trish Franklin, Wally Franklin, Bárbara Galletti Vernazzani, Tilen Genov, Marie Hill, David R. Johnston, Erin L. Keene, Sabre D. Mahaffy, Tamara L. McGuire, Liah McPherson, Catherine Meyer, Robert Michaud, Anastasia Miliou, Dara N. Orbach, Heidi C. Pearson, Marianne H. Rasmussen, William J. Rayment, Caroline Rinaldi, Renato Rinaldi, Salvatore Siciliano, Stephanie Stack, Beatriz Tintore, Leigh G. Torres, Jared R. Towers, Cameron Trotter, Reny Tyson Moore, Caroline R. Weir, Rebecca Wellard, Randall Wells, Kymberly M. Yano, Jochen R. Zaeschmar, Lars Bejder
Format: Article
Language:English
Published: Wiley 2023-10-01
Series:Methods in Ecology and Evolution
Subjects:
Online Access:https://doi.org/10.1111/2041-210X.14167
_version_ 1827800205059162112
author Philip T. Patton
Ted Cheeseman
Kenshin Abe
Taiki Yamaguchi
Walter Reade
Ken Southerland
Addison Howard
Erin M. Oleson
Jason B. Allen
Erin Ashe
Aline Athayde
Robin W. Baird
Charla Basran
Elsa Cabrera
John Calambokidis
Júlio Cardoso
Emma L. Carroll
Amina Cesario
Barbara J. Cheney
Enrico Corsi
Jens Currie
John W. Durban
Erin A. Falcone
Holly Fearnbach
Kiirsten Flynn
Trish Franklin
Wally Franklin
Bárbara Galletti Vernazzani
Tilen Genov
Marie Hill
David R. Johnston
Erin L. Keene
Sabre D. Mahaffy
Tamara L. McGuire
Liah McPherson
Catherine Meyer
Robert Michaud
Anastasia Miliou
Dara N. Orbach
Heidi C. Pearson
Marianne H. Rasmussen
William J. Rayment
Caroline Rinaldi
Renato Rinaldi
Salvatore Siciliano
Stephanie Stack
Beatriz Tintore
Leigh G. Torres
Jared R. Towers
Cameron Trotter
Reny Tyson Moore
Caroline R. Weir
Rebecca Wellard
Randall Wells
Kymberly M. Yano
Jochen R. Zaeschmar
Lars Bejder
author_facet Philip T. Patton
Ted Cheeseman
Kenshin Abe
Taiki Yamaguchi
Walter Reade
Ken Southerland
Addison Howard
Erin M. Oleson
Jason B. Allen
Erin Ashe
Aline Athayde
Robin W. Baird
Charla Basran
Elsa Cabrera
John Calambokidis
Júlio Cardoso
Emma L. Carroll
Amina Cesario
Barbara J. Cheney
Enrico Corsi
Jens Currie
John W. Durban
Erin A. Falcone
Holly Fearnbach
Kiirsten Flynn
Trish Franklin
Wally Franklin
Bárbara Galletti Vernazzani
Tilen Genov
Marie Hill
David R. Johnston
Erin L. Keene
Sabre D. Mahaffy
Tamara L. McGuire
Liah McPherson
Catherine Meyer
Robert Michaud
Anastasia Miliou
Dara N. Orbach
Heidi C. Pearson
Marianne H. Rasmussen
William J. Rayment
Caroline Rinaldi
Renato Rinaldi
Salvatore Siciliano
Stephanie Stack
Beatriz Tintore
Leigh G. Torres
Jared R. Towers
Cameron Trotter
Reny Tyson Moore
Caroline R. Weir
Rebecca Wellard
Randall Wells
Kymberly M. Yano
Jochen R. Zaeschmar
Lars Bejder
author_sort Philip T. Patton
collection DOAJ
description Abstract Researchers can investigate many aspects of animal ecology through noninvasive photo–identification. Photo–identification is becoming more efficient as matching individuals between photos is increasingly automated. However, the convolutional neural network models that have facilitated this change need many training images to generalize well. As a result, they have often been developed for individual species that meet this threshold. These single‐species methods might underperform, as they ignore potential similarities in identifying characteristics and the photo–identification process among species. In this paper, we introduce a multi‐species photo–identification model based on a state‐of‐the‐art method in human facial recognition, the ArcFace classification head. Our model uses two such heads to jointly classify species and identities, allowing species to share information and parameters within the network. As a demonstration, we trained this model with 50,796 images from 39 catalogues of 24 cetacean species, evaluating its predictive performance on 21,192 test images from the same catalogues. We further evaluated its predictive performance with two external catalogues entirely composed of identities that the model did not see during training. The model achieved a mean average precision (MAP) of 0.869 on the test set. Of these, 10 catalogues representing seven species achieved a MAP score over 0.95. For some species, there was notable variation in performance among catalogues, largely explained by variation in photo quality. Finally, the model appeared to generalize well, with the two external catalogues scoring similarly to their species' counterparts in the larger test set. From our cetacean application, we provide a list of recommendations for potential users of this model, focusing on those with cetacean photo–identification catalogues. For example, users with high quality images of animals identified by dorsal nicks and notches should expect near optimal performance. Users can expect decreasing performance for catalogues with higher proportions of indistinct individuals or poor quality photos. Finally, we note that this model is currently freely available as code in a GitHub repository and as a graphical user interface, with additional functionality for collaborative data management, via Happywhale.com.
first_indexed 2024-03-11T20:04:58Z
format Article
id doaj.art-f5f26c5e992e4bbfbb39d716613aac91
institution Directory Open Access Journal
issn 2041-210X
language English
last_indexed 2024-03-11T20:04:58Z
publishDate 2023-10-01
publisher Wiley
record_format Article
series Methods in Ecology and Evolution
spelling doaj.art-f5f26c5e992e4bbfbb39d716613aac912023-10-04T06:42:59ZengWileyMethods in Ecology and Evolution2041-210X2023-10-0114102611262510.1111/2041-210X.14167A deep learning approach to photo–identification demonstrates high performance on two dozen cetacean speciesPhilip T. Patton0Ted Cheeseman1Kenshin Abe2Taiki Yamaguchi3Walter Reade4Ken Southerland5Addison Howard6Erin M. Oleson7Jason B. Allen8Erin Ashe9Aline Athayde10Robin W. Baird11Charla Basran12Elsa Cabrera13John Calambokidis14Júlio Cardoso15Emma L. Carroll16Amina Cesario17Barbara J. Cheney18Enrico Corsi19Jens Currie20John W. Durban21Erin A. Falcone22Holly Fearnbach23Kiirsten Flynn24Trish Franklin25Wally Franklin26Bárbara Galletti Vernazzani27Tilen Genov28Marie Hill29David R. Johnston30Erin L. Keene31Sabre D. Mahaffy32Tamara L. McGuire33Liah McPherson34Catherine Meyer35Robert Michaud36Anastasia Miliou37Dara N. Orbach38Heidi C. Pearson39Marianne H. Rasmussen40William J. Rayment41Caroline Rinaldi42Renato Rinaldi43Salvatore Siciliano44Stephanie Stack45Beatriz Tintore46Leigh G. Torres47Jared R. Towers48Cameron Trotter49Reny Tyson Moore50Caroline R. Weir51Rebecca Wellard52Randall Wells53Kymberly M. Yano54Jochen R. Zaeschmar55Lars Bejder56Marine Mammal Research Program, Hawai'i Institute of Marine Biology University of Hawai‘i at Mānoa Kāne'ohe Hawai'i USAMarine Ecological Research Centre Southern Cross University Lismore New South Wales AustraliaPreferred Networks, Inc. Chiyoda‐ku Tokyo JapanPreferred Networks, Inc. Chiyoda‐ku Tokyo JapanGoogle, Kaggle San Francisco California USAHappywhale.com Santa Cruz California USAGoogle, Kaggle San Francisco California USANOAA Fisheries Pacific Islands Fisheries Science Center Honolulu Hawai'i USAChicago Zoological Society's Sarasota Dolphin Research Program c/o Mote Marine Laboratory Sarasota Florida USAOceans Initiative Seattle Washington USAProjeto Baleia à Vista (ProBaV) Ilhabela BrazilCascadia Research Collective Olympia Washington USAResearch Center in Húsavík University of Iceland Húsavík IcelandCentro de Conservación Cetacea (CCC) Santiago ChileCascadia Research Collective Olympia Washington USAProjeto Baleia à Vista (ProBaV) Ilhabela BrazilSchool of Biological Sciences University of Auckland‐Waipapa Taumata Rau Auckland New ZealandTethys Research Institute Milan ItalySchool of Biological Sciences University of Aberdeen Cromarty UKCascadia Research Collective Olympia Washington USAMarine Mammal Research Program, Hawai'i Institute of Marine Biology University of Hawai‘i at Mānoa Kāne'ohe Hawai'i USASR3, SeaLife Response, Rehabilitation and Research Des Moines Washington USAMarine Ecology and Telemetry Research Seabeck Washington USASR3, SeaLife Response, Rehabilitation and Research Des Moines Washington USACascadia Research Collective Olympia Washington USAMarine Ecological Research Centre Southern Cross University Lismore New South Wales AustraliaMarine Ecological Research Centre Southern Cross University Lismore New South Wales AustraliaCentro de Conservación Cetacea (CCC) Santiago ChileMorigenos‐Slovenian Marine Mammal Society Piran SloveniaNOAA Fisheries Pacific Islands Fisheries Science Center Honolulu Hawai'i USAMarine Science Department, Te Tari Putaiao Taimoana University of Otago Otago New ZealandMarine Ecology and Telemetry Research Seabeck Washington USACascadia Research Collective Olympia Washington USAThe Cook Inlet Beluga Whale Photo–ID Project Anchorage Alaska USAMarine Mammal Research Program, Hawai'i Institute of Marine Biology University of Hawai‘i at Mānoa Kāne'ohe Hawai'i USASchool of Biological Sciences, Te Kura Mātauranga Koiora University of Auckland Auckland New ZealandGroupe de Recherche et D'éducation sur les Mammifères Marins (GREMM) Tadoussac Québec CanadaArchipelagos Institute of Marine Conservation Samos Island GreeceDepartment of Life Sciences Texas A&M University‐Corpus Christi Corpus Christi Texas USADepartment of Natural Sciences University of Alaska Southeast Juneau Alaska USAResearch Center in Húsavík University of Iceland Húsavík IcelandDepartment of Marine Science‐Te Tari Pūtaiao Taimoana University of Otago Dunedin New ZealandL'association Evasion Tropicale Bouillante GuadeloupeL'association Evasion Tropicale Bouillante GuadeloupeDepartamento de Ciências Biológicas Escola Nacional de Saúde Pública/Fiocruz Rio de Janeiro BrazilPacific Whale Foundation Wailuku Hawai'i USAArchipelagos Institute of Marine Conservation Samos Island GreeceMarine Mammal Institute, Oregon State University Newport Oregon USABay Cetology Alert Bay British Columbia CanadaSchool of Engineering Newcastle University Newcastle UKChicago Zoological Society's Sarasota Dolphin Research Program c/o Mote Marine Laboratory Sarasota Florida USAFalklands Conservation Stanley Falkland IslandsCentre for Marine Science and Technology Curtin University Bentley Western Australia AustraliaChicago Zoological Society's Sarasota Dolphin Research Program c/o Mote Marine Laboratory Sarasota Florida USANOAA Fisheries Pacific Islands Fisheries Science Center Honolulu Hawai'i USAFar Out Ocean Research Collective Paihia New ZealandMarine Mammal Research Program, Hawai'i Institute of Marine Biology University of Hawai‘i at Mānoa Kāne'ohe Hawai'i USAAbstract Researchers can investigate many aspects of animal ecology through noninvasive photo–identification. Photo–identification is becoming more efficient as matching individuals between photos is increasingly automated. However, the convolutional neural network models that have facilitated this change need many training images to generalize well. As a result, they have often been developed for individual species that meet this threshold. These single‐species methods might underperform, as they ignore potential similarities in identifying characteristics and the photo–identification process among species. In this paper, we introduce a multi‐species photo–identification model based on a state‐of‐the‐art method in human facial recognition, the ArcFace classification head. Our model uses two such heads to jointly classify species and identities, allowing species to share information and parameters within the network. As a demonstration, we trained this model with 50,796 images from 39 catalogues of 24 cetacean species, evaluating its predictive performance on 21,192 test images from the same catalogues. We further evaluated its predictive performance with two external catalogues entirely composed of identities that the model did not see during training. The model achieved a mean average precision (MAP) of 0.869 on the test set. Of these, 10 catalogues representing seven species achieved a MAP score over 0.95. For some species, there was notable variation in performance among catalogues, largely explained by variation in photo quality. Finally, the model appeared to generalize well, with the two external catalogues scoring similarly to their species' counterparts in the larger test set. From our cetacean application, we provide a list of recommendations for potential users of this model, focusing on those with cetacean photo–identification catalogues. For example, users with high quality images of animals identified by dorsal nicks and notches should expect near optimal performance. Users can expect decreasing performance for catalogues with higher proportions of indistinct individuals or poor quality photos. Finally, we note that this model is currently freely available as code in a GitHub repository and as a graphical user interface, with additional functionality for collaborative data management, via Happywhale.com.https://doi.org/10.1111/2041-210X.14167artificial intelligencecetaceancomputer visionconvolutional neural networkdeep learningdolphin
spellingShingle Philip T. Patton
Ted Cheeseman
Kenshin Abe
Taiki Yamaguchi
Walter Reade
Ken Southerland
Addison Howard
Erin M. Oleson
Jason B. Allen
Erin Ashe
Aline Athayde
Robin W. Baird
Charla Basran
Elsa Cabrera
John Calambokidis
Júlio Cardoso
Emma L. Carroll
Amina Cesario
Barbara J. Cheney
Enrico Corsi
Jens Currie
John W. Durban
Erin A. Falcone
Holly Fearnbach
Kiirsten Flynn
Trish Franklin
Wally Franklin
Bárbara Galletti Vernazzani
Tilen Genov
Marie Hill
David R. Johnston
Erin L. Keene
Sabre D. Mahaffy
Tamara L. McGuire
Liah McPherson
Catherine Meyer
Robert Michaud
Anastasia Miliou
Dara N. Orbach
Heidi C. Pearson
Marianne H. Rasmussen
William J. Rayment
Caroline Rinaldi
Renato Rinaldi
Salvatore Siciliano
Stephanie Stack
Beatriz Tintore
Leigh G. Torres
Jared R. Towers
Cameron Trotter
Reny Tyson Moore
Caroline R. Weir
Rebecca Wellard
Randall Wells
Kymberly M. Yano
Jochen R. Zaeschmar
Lars Bejder
A deep learning approach to photo–identification demonstrates high performance on two dozen cetacean species
Methods in Ecology and Evolution
artificial intelligence
cetacean
computer vision
convolutional neural network
deep learning
dolphin
title A deep learning approach to photo–identification demonstrates high performance on two dozen cetacean species
title_full A deep learning approach to photo–identification demonstrates high performance on two dozen cetacean species
title_fullStr A deep learning approach to photo–identification demonstrates high performance on two dozen cetacean species
title_full_unstemmed A deep learning approach to photo–identification demonstrates high performance on two dozen cetacean species
title_short A deep learning approach to photo–identification demonstrates high performance on two dozen cetacean species
title_sort deep learning approach to photo identification demonstrates high performance on two dozen cetacean species
topic artificial intelligence
cetacean
computer vision
convolutional neural network
deep learning
dolphin
url https://doi.org/10.1111/2041-210X.14167
work_keys_str_mv AT philiptpatton adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT tedcheeseman adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT kenshinabe adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT taikiyamaguchi adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT walterreade adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT kensoutherland adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT addisonhoward adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT erinmoleson adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT jasonballen adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT erinashe adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT alineathayde adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT robinwbaird adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT charlabasran adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT elsacabrera adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT johncalambokidis adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT juliocardoso adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT emmalcarroll adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT aminacesario adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT barbarajcheney adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT enricocorsi adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT jenscurrie adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT johnwdurban adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT erinafalcone adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT hollyfearnbach adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT kiirstenflynn adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT trishfranklin adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT wallyfranklin adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT barbaragallettivernazzani adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT tilengenov adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT mariehill adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT davidrjohnston adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT erinlkeene adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT sabredmahaffy adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT tamaralmcguire adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT liahmcpherson adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT catherinemeyer adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT robertmichaud adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT anastasiamiliou adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT daranorbach adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT heidicpearson adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT mariannehrasmussen adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT williamjrayment adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT carolinerinaldi adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT renatorinaldi adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT salvatoresiciliano adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT stephaniestack adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT beatriztintore adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT leighgtorres adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT jaredrtowers adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT camerontrotter adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT renytysonmoore adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT carolinerweir adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT rebeccawellard adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT randallwells adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT kymberlymyano adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT jochenrzaeschmar adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT larsbejder adeeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT philiptpatton deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT tedcheeseman deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT kenshinabe deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT taikiyamaguchi deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT walterreade deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT kensoutherland deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT addisonhoward deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT erinmoleson deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT jasonballen deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT erinashe deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT alineathayde deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT robinwbaird deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT charlabasran deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT elsacabrera deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT johncalambokidis deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT juliocardoso deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT emmalcarroll deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT aminacesario deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT barbarajcheney deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT enricocorsi deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT jenscurrie deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT johnwdurban deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT erinafalcone deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT hollyfearnbach deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT kiirstenflynn deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT trishfranklin deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT wallyfranklin deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT barbaragallettivernazzani deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT tilengenov deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT mariehill deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT davidrjohnston deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT erinlkeene deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT sabredmahaffy deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT tamaralmcguire deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT liahmcpherson deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT catherinemeyer deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT robertmichaud deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT anastasiamiliou deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT daranorbach deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT heidicpearson deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT mariannehrasmussen deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT williamjrayment deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT carolinerinaldi deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT renatorinaldi deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT salvatoresiciliano deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT stephaniestack deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT beatriztintore deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT leighgtorres deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT jaredrtowers deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT camerontrotter deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT renytysonmoore deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT carolinerweir deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT rebeccawellard deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT randallwells deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT kymberlymyano deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT jochenrzaeschmar deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies
AT larsbejder deeplearningapproachtophotoidentificationdemonstrateshighperformanceontwodozencetaceanspecies