BP<inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>NN: <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Nearest Neighbor Classifier With Pairwise Distance Metrics and Belief Function Theory

The k-nearest neighbor (kNN) rule is one of the most popular classification algorithms in pattern recognition field because it is very simple to understand but works quite well in practice. However, the performance of the kNN rule depends critically on its being given a good distance metric over the...

Full description

Bibliographic Details
Main Authors: Lianmeng Jiao, Xiaojiao Geng, Quan Pan
Format: Article
Language:English
Published: IEEE 2019-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8684242/
_version_ 1829471988889944064
author Lianmeng Jiao
Xiaojiao Geng
Quan Pan
author_facet Lianmeng Jiao
Xiaojiao Geng
Quan Pan
author_sort Lianmeng Jiao
collection DOAJ
description The k-nearest neighbor (kNN) rule is one of the most popular classification algorithms in pattern recognition field because it is very simple to understand but works quite well in practice. However, the performance of the kNN rule depends critically on its being given a good distance metric over the input space, especially in small data set situations. In this paper, a new kNN-based classifier, called BPkNN, is developed based on pairwise distance metrics and belief function theory. The idea of the proposal is that instead of learning a global distance metric, we first decompose it into learning a group of pairwise distance metrics. Then, based on each learned pairwise distance metric, a pairwise kNN (PkNN) sub-classifier can be adaptively designed to separate two classes. Finally, a polychotomous classification problem is solved by combining the outputs of these PkNN sub-classifiers in belief function framework. The BPkNN classifier improves the classification performance thanks to the new distance metrics which provide more flexibility to design the feature weights and the belief function-based combination method which can better address the uncertainty involved in the outputs of the sub-classifiers. Experimental results based on synthetic and real data sets show that the proposed BPkNN can achieve better classification accuracy in comparison with some state-of-the-art methods.
first_indexed 2024-12-14T02:05:36Z
format Article
id doaj.art-f60a31121aca4378a5ef3ca1d4aae895
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-12-14T02:05:36Z
publishDate 2019-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-f60a31121aca4378a5ef3ca1d4aae8952022-12-21T23:20:54ZengIEEEIEEE Access2169-35362019-01-017489354894710.1109/ACCESS.2019.29097528684242BP<inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>NN: <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Nearest Neighbor Classifier With Pairwise Distance Metrics and Belief Function TheoryLianmeng Jiao0https://orcid.org/0000-0002-9435-9668Xiaojiao Geng1Quan Pan2School of Automation, Northwestern Polytechnical University, Xi&#x2019;an, ChinaSchool of Automation, Northwestern Polytechnical University, Xi&#x2019;an, ChinaSchool of Automation, Northwestern Polytechnical University, Xi&#x2019;an, ChinaThe k-nearest neighbor (kNN) rule is one of the most popular classification algorithms in pattern recognition field because it is very simple to understand but works quite well in practice. However, the performance of the kNN rule depends critically on its being given a good distance metric over the input space, especially in small data set situations. In this paper, a new kNN-based classifier, called BPkNN, is developed based on pairwise distance metrics and belief function theory. The idea of the proposal is that instead of learning a global distance metric, we first decompose it into learning a group of pairwise distance metrics. Then, based on each learned pairwise distance metric, a pairwise kNN (PkNN) sub-classifier can be adaptively designed to separate two classes. Finally, a polychotomous classification problem is solved by combining the outputs of these PkNN sub-classifiers in belief function framework. The BPkNN classifier improves the classification performance thanks to the new distance metrics which provide more flexibility to design the feature weights and the belief function-based combination method which can better address the uncertainty involved in the outputs of the sub-classifiers. Experimental results based on synthetic and real data sets show that the proposed BPkNN can achieve better classification accuracy in comparison with some state-of-the-art methods.https://ieeexplore.ieee.org/document/8684242/Pattern classification<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k</italic>-nearest-neighbor classifierpairwise distance metricbelief function theory
spellingShingle Lianmeng Jiao
Xiaojiao Geng
Quan Pan
BP<inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>NN: <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Nearest Neighbor Classifier With Pairwise Distance Metrics and Belief Function Theory
IEEE Access
Pattern classification
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k</italic>-nearest-neighbor classifier
pairwise distance metric
belief function theory
title BP<inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>NN: <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Nearest Neighbor Classifier With Pairwise Distance Metrics and Belief Function Theory
title_full BP<inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>NN: <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Nearest Neighbor Classifier With Pairwise Distance Metrics and Belief Function Theory
title_fullStr BP<inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>NN: <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Nearest Neighbor Classifier With Pairwise Distance Metrics and Belief Function Theory
title_full_unstemmed BP<inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>NN: <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Nearest Neighbor Classifier With Pairwise Distance Metrics and Belief Function Theory
title_short BP<inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>NN: <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Nearest Neighbor Classifier With Pairwise Distance Metrics and Belief Function Theory
title_sort bp inline formula tex math notation latex k tex math inline formula nn inline formula tex math notation latex k tex math inline formula nearest neighbor classifier with pairwise distance metrics and belief function theory
topic Pattern classification
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k</italic>-nearest-neighbor classifier
pairwise distance metric
belief function theory
url https://ieeexplore.ieee.org/document/8684242/
work_keys_str_mv AT lianmengjiao bpinlineformulatexmathnotationlatexktexmathinlineformulanninlineformulatexmathnotationlatexktexmathinlineformulanearestneighborclassifierwithpairwisedistancemetricsandbelieffunctiontheory
AT xiaojiaogeng bpinlineformulatexmathnotationlatexktexmathinlineformulanninlineformulatexmathnotationlatexktexmathinlineformulanearestneighborclassifierwithpairwisedistancemetricsandbelieffunctiontheory
AT quanpan bpinlineformulatexmathnotationlatexktexmathinlineformulanninlineformulatexmathnotationlatexktexmathinlineformulanearestneighborclassifierwithpairwisedistancemetricsandbelieffunctiontheory