KATZNCP: a miRNA–disease association prediction model integrating KATZ algorithm and network consistency projection
Abstract Background Clinical studies have shown that miRNAs are closely related to human health. The study of potential associations between miRNAs and diseases will contribute to a profound understanding of the mechanism of disease development, as well as human disease prevention and treatment. MiR...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2023-06-01
|
Series: | BMC Bioinformatics |
Subjects: | |
Online Access: | https://doi.org/10.1186/s12859-023-05365-2 |
_version_ | 1797811309483393024 |
---|---|
author | Min Chen Yingwei Deng Zejun Li Yifan Ye Ziyi He |
author_facet | Min Chen Yingwei Deng Zejun Li Yifan Ye Ziyi He |
author_sort | Min Chen |
collection | DOAJ |
description | Abstract Background Clinical studies have shown that miRNAs are closely related to human health. The study of potential associations between miRNAs and diseases will contribute to a profound understanding of the mechanism of disease development, as well as human disease prevention and treatment. MiRNA–disease associations predicted by computational methods are the best complement to biological experiments. Results In this research, a federated computational model KATZNCP was proposed on the basis of the KATZ algorithm and network consistency projection to infer the potential miRNA–disease associations. In KATZNCP, a heterogeneous network was initially constructed by integrating the known miRNA–disease association, integrated miRNA similarities, and integrated disease similarities; then, the KATZ algorithm was implemented in the heterogeneous network to obtain the estimated miRNA–disease prediction scores. Finally, the precise scores were obtained by the network consistency projection method as the final prediction results. KATZNCP achieved the reliable predictive performance in leave-one-out cross-validation (LOOCV) with an AUC value of 0.9325, which was better than the state-of-the-art comparable algorithms. Furthermore, case studies of lung neoplasms and esophageal neoplasms demonstrated the excellent predictive performance of KATZNCP. Conclusion A new computational model KATZNCP was proposed for predicting potential miRNA–drug associations based on KATZ and network consistency projections, which can effectively predict the potential miRNA–disease interactions. Therefore, KATZNCP can be used to provide guidance for future experiments. |
first_indexed | 2024-03-13T07:21:45Z |
format | Article |
id | doaj.art-f612b38a9f1e4ee5b32eca98c17f85e4 |
institution | Directory Open Access Journal |
issn | 1471-2105 |
language | English |
last_indexed | 2024-03-13T07:21:45Z |
publishDate | 2023-06-01 |
publisher | BMC |
record_format | Article |
series | BMC Bioinformatics |
spelling | doaj.art-f612b38a9f1e4ee5b32eca98c17f85e42023-06-04T11:40:06ZengBMCBMC Bioinformatics1471-21052023-06-0124112010.1186/s12859-023-05365-2KATZNCP: a miRNA–disease association prediction model integrating KATZ algorithm and network consistency projectionMin Chen0Yingwei Deng1Zejun Li2Yifan Ye3Ziyi He4School of Computer Science and Technology, Hunan Institute of TechnologySchool of Computer Science and Technology, Hunan Institute of TechnologySchool of Computer Science and Technology, Hunan Institute of TechnologySchool of Computer Science and Technology, Hunan Institute of TechnologySchool of Computer Science and Technology, Hunan Institute of TechnologyAbstract Background Clinical studies have shown that miRNAs are closely related to human health. The study of potential associations between miRNAs and diseases will contribute to a profound understanding of the mechanism of disease development, as well as human disease prevention and treatment. MiRNA–disease associations predicted by computational methods are the best complement to biological experiments. Results In this research, a federated computational model KATZNCP was proposed on the basis of the KATZ algorithm and network consistency projection to infer the potential miRNA–disease associations. In KATZNCP, a heterogeneous network was initially constructed by integrating the known miRNA–disease association, integrated miRNA similarities, and integrated disease similarities; then, the KATZ algorithm was implemented in the heterogeneous network to obtain the estimated miRNA–disease prediction scores. Finally, the precise scores were obtained by the network consistency projection method as the final prediction results. KATZNCP achieved the reliable predictive performance in leave-one-out cross-validation (LOOCV) with an AUC value of 0.9325, which was better than the state-of-the-art comparable algorithms. Furthermore, case studies of lung neoplasms and esophageal neoplasms demonstrated the excellent predictive performance of KATZNCP. Conclusion A new computational model KATZNCP was proposed for predicting potential miRNA–drug associations based on KATZ and network consistency projections, which can effectively predict the potential miRNA–disease interactions. Therefore, KATZNCP can be used to provide guidance for future experiments.https://doi.org/10.1186/s12859-023-05365-2miRNA–disease associationsKATZ algorithmNetwork consistency projection |
spellingShingle | Min Chen Yingwei Deng Zejun Li Yifan Ye Ziyi He KATZNCP: a miRNA–disease association prediction model integrating KATZ algorithm and network consistency projection BMC Bioinformatics miRNA–disease associations KATZ algorithm Network consistency projection |
title | KATZNCP: a miRNA–disease association prediction model integrating KATZ algorithm and network consistency projection |
title_full | KATZNCP: a miRNA–disease association prediction model integrating KATZ algorithm and network consistency projection |
title_fullStr | KATZNCP: a miRNA–disease association prediction model integrating KATZ algorithm and network consistency projection |
title_full_unstemmed | KATZNCP: a miRNA–disease association prediction model integrating KATZ algorithm and network consistency projection |
title_short | KATZNCP: a miRNA–disease association prediction model integrating KATZ algorithm and network consistency projection |
title_sort | katzncp a mirna disease association prediction model integrating katz algorithm and network consistency projection |
topic | miRNA–disease associations KATZ algorithm Network consistency projection |
url | https://doi.org/10.1186/s12859-023-05365-2 |
work_keys_str_mv | AT minchen katzncpamirnadiseaseassociationpredictionmodelintegratingkatzalgorithmandnetworkconsistencyprojection AT yingweideng katzncpamirnadiseaseassociationpredictionmodelintegratingkatzalgorithmandnetworkconsistencyprojection AT zejunli katzncpamirnadiseaseassociationpredictionmodelintegratingkatzalgorithmandnetworkconsistencyprojection AT yifanye katzncpamirnadiseaseassociationpredictionmodelintegratingkatzalgorithmandnetworkconsistencyprojection AT ziyihe katzncpamirnadiseaseassociationpredictionmodelintegratingkatzalgorithmandnetworkconsistencyprojection |