Phase Diffusion in Low-<i>E<sub>J</sub></i> Josephson Junctions at Milli-Kelvin Temperatures

Josephson junctions (JJs) with Josephson energy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>E</mi><mi>J</mi></msub><mo>≲</mo><mn>1</mn...

Full description

Bibliographic Details
Main Authors: Wen-Sen Lu, Konstantin Kalashnikov, Plamen Kamenov, Thomas J. DiNapoli, Michael E. Gershenson
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/12/2/416
_version_ 1797443463905542144
author Wen-Sen Lu
Konstantin Kalashnikov
Plamen Kamenov
Thomas J. DiNapoli
Michael E. Gershenson
author_facet Wen-Sen Lu
Konstantin Kalashnikov
Plamen Kamenov
Thomas J. DiNapoli
Michael E. Gershenson
author_sort Wen-Sen Lu
collection DOAJ
description Josephson junctions (JJs) with Josephson energy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>E</mi><mi>J</mi></msub><mo>≲</mo><mn>1</mn></mrow></semantics></math></inline-formula> K are widely employed as non-linear elements in superconducting circuits for quantum computing operating at milli-Kelvin temperatures. In the qubits with small charging energy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mi>C</mi></msub></semantics></math></inline-formula> ( <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>E</mi><mi>J</mi></msub><mo>/</mo><msub><mi>E</mi><mi>C</mi></msub><mo>≫</mo><mn>1</mn></mrow></semantics></math></inline-formula> ), such as the transmon, the incoherent phase slips (IPS) might become the dominant source of dissipation with decreasing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mi>J</mi></msub></semantics></math></inline-formula>. In this work, a systematic study of the IPS in low-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mi>J</mi></msub></semantics></math></inline-formula> JJs at milli-Kelvin temperatures is reported. Strong suppression of the critical (switching) current and a very rapid growth of the zero-bias resistance due to the IPS are observed with decreasing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mi>J</mi></msub></semantics></math></inline-formula> below 1 K. With further improvement of coherence of superconducting qubits, the observed IPS-induced dissipation might limit the performance of qubits based on low-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mi>J</mi></msub></semantics></math></inline-formula> junctions. These results point the way to future improvements of such qubits.
first_indexed 2024-03-09T12:56:26Z
format Article
id doaj.art-f62d605218134db98c5bcba1ef6f3b5c
institution Directory Open Access Journal
issn 2079-9292
language English
last_indexed 2024-03-09T12:56:26Z
publishDate 2023-01-01
publisher MDPI AG
record_format Article
series Electronics
spelling doaj.art-f62d605218134db98c5bcba1ef6f3b5c2023-11-30T22:00:09ZengMDPI AGElectronics2079-92922023-01-0112241610.3390/electronics12020416Phase Diffusion in Low-<i>E<sub>J</sub></i> Josephson Junctions at Milli-Kelvin TemperaturesWen-Sen Lu0Konstantin Kalashnikov1Plamen Kamenov2Thomas J. DiNapoli3Michael E. Gershenson4Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USADepartment of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USADepartment of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USADepartment of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USADepartment of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USAJosephson junctions (JJs) with Josephson energy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>E</mi><mi>J</mi></msub><mo>≲</mo><mn>1</mn></mrow></semantics></math></inline-formula> K are widely employed as non-linear elements in superconducting circuits for quantum computing operating at milli-Kelvin temperatures. In the qubits with small charging energy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mi>C</mi></msub></semantics></math></inline-formula> ( <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>E</mi><mi>J</mi></msub><mo>/</mo><msub><mi>E</mi><mi>C</mi></msub><mo>≫</mo><mn>1</mn></mrow></semantics></math></inline-formula> ), such as the transmon, the incoherent phase slips (IPS) might become the dominant source of dissipation with decreasing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mi>J</mi></msub></semantics></math></inline-formula>. In this work, a systematic study of the IPS in low-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mi>J</mi></msub></semantics></math></inline-formula> JJs at milli-Kelvin temperatures is reported. Strong suppression of the critical (switching) current and a very rapid growth of the zero-bias resistance due to the IPS are observed with decreasing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mi>J</mi></msub></semantics></math></inline-formula> below 1 K. With further improvement of coherence of superconducting qubits, the observed IPS-induced dissipation might limit the performance of qubits based on low-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mi>J</mi></msub></semantics></math></inline-formula> junctions. These results point the way to future improvements of such qubits.https://www.mdpi.com/2079-9292/12/2/416superconductingJosephson junctionphase slipcritical currentJosephson energyquantum
spellingShingle Wen-Sen Lu
Konstantin Kalashnikov
Plamen Kamenov
Thomas J. DiNapoli
Michael E. Gershenson
Phase Diffusion in Low-<i>E<sub>J</sub></i> Josephson Junctions at Milli-Kelvin Temperatures
Electronics
superconducting
Josephson junction
phase slip
critical current
Josephson energy
quantum
title Phase Diffusion in Low-<i>E<sub>J</sub></i> Josephson Junctions at Milli-Kelvin Temperatures
title_full Phase Diffusion in Low-<i>E<sub>J</sub></i> Josephson Junctions at Milli-Kelvin Temperatures
title_fullStr Phase Diffusion in Low-<i>E<sub>J</sub></i> Josephson Junctions at Milli-Kelvin Temperatures
title_full_unstemmed Phase Diffusion in Low-<i>E<sub>J</sub></i> Josephson Junctions at Milli-Kelvin Temperatures
title_short Phase Diffusion in Low-<i>E<sub>J</sub></i> Josephson Junctions at Milli-Kelvin Temperatures
title_sort phase diffusion in low i e sub j sub i josephson junctions at milli kelvin temperatures
topic superconducting
Josephson junction
phase slip
critical current
Josephson energy
quantum
url https://www.mdpi.com/2079-9292/12/2/416
work_keys_str_mv AT wensenlu phasediffusioninlowiesubjsubijosephsonjunctionsatmillikelvintemperatures
AT konstantinkalashnikov phasediffusioninlowiesubjsubijosephsonjunctionsatmillikelvintemperatures
AT plamenkamenov phasediffusioninlowiesubjsubijosephsonjunctionsatmillikelvintemperatures
AT thomasjdinapoli phasediffusioninlowiesubjsubijosephsonjunctionsatmillikelvintemperatures
AT michaelegershenson phasediffusioninlowiesubjsubijosephsonjunctionsatmillikelvintemperatures