Microstructural Dynamics of Polymer Melts during Stretching: Radial Size Distribution

The transient elongational viscosity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="sans-serif">η</mi><mi mathvariant="normal">e</mi&g...

Full description

Bibliographic Details
Main Authors: Ming-Chang Hsieh, Yu-Hao Tsao, Yu-Jane Sheng, Heng-Kwong Tsao
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/15/9/2067
_version_ 1797601867091410944
author Ming-Chang Hsieh
Yu-Hao Tsao
Yu-Jane Sheng
Heng-Kwong Tsao
author_facet Ming-Chang Hsieh
Yu-Hao Tsao
Yu-Jane Sheng
Heng-Kwong Tsao
author_sort Ming-Chang Hsieh
collection DOAJ
description The transient elongational viscosity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="sans-serif">η</mi><mi mathvariant="normal">e</mi></msub><mrow><mo>(</mo><mi mathvariant="normal">t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of the polymer melt is known to exhibit strain hardening, which depends on the strain rate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mi mathvariant="sans-serif">ε</mi><mo>˙</mo></mover></mrow></semantics></math></inline-formula>. This phenomenon was elucidated by the difference of chain stretching in the entanglement network between extension and shear. However, to date, the microscopic evolution of polymer melt has not been fully statistically analyzed. In this work, the radial size distributions <i>P</i>(<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="normal">R</mi><mi mathvariant="normal">g</mi></msub><mrow><mo>,</mo><mi mathvariant="normal">t</mi></mrow></mrow></semantics></math></inline-formula>) of linear polymers are explored by dissipative particle dynamics during the stretching processes. In uniaxial extensional flow, it is observed that the mean radius of gyration <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover><mi mathvariant="normal">R</mi><mo>¯</mo></mover></mrow><mi mathvariant="normal">g</mi></msub><mrow><mo>(</mo><mi mathvariant="normal">t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and standard deviation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi mathvariant="sans-serif">σ</mi><mo>(</mo><mi mathvariant="normal">t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> remain unchanged until the onset of strain hardening, corresponding to linear viscoelasticity. Both <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover><mi mathvariant="normal">R</mi><mo>¯</mo></mover></mrow><mi mathvariant="normal">g</mi></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">σ</mi></semantics></math></inline-formula> rise rapidly in the non-linear regime, and bimodal size distribution can emerge. Moreover, the onset of strain hardening is found to be insensitive to the Hencky strain (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover><mi mathvariant="sans-serif">ε</mi><mo>˙</mo></mover></mrow><mi mathvariant="normal">H</mi></msub><mi mathvariant="normal">t</mi></mrow></semantics></math></inline-formula>) and chain length (N).
first_indexed 2024-03-11T04:09:38Z
format Article
id doaj.art-f63c55716a1e44fe891e30218a51dd06
institution Directory Open Access Journal
issn 2073-4360
language English
last_indexed 2024-03-11T04:09:38Z
publishDate 2023-04-01
publisher MDPI AG
record_format Article
series Polymers
spelling doaj.art-f63c55716a1e44fe891e30218a51dd062023-11-17T23:34:47ZengMDPI AGPolymers2073-43602023-04-01159206710.3390/polym15092067Microstructural Dynamics of Polymer Melts during Stretching: Radial Size DistributionMing-Chang Hsieh0Yu-Hao Tsao1Yu-Jane Sheng2Heng-Kwong Tsao3Department of Chemical Engineering, National Taiwan University, Taipei 106, TaiwanDepartment of Chemical Engineering, National Taiwan University, Taipei 106, TaiwanDepartment of Chemical Engineering, National Taiwan University, Taipei 106, TaiwanDepartment of Chemical and Materials Engineering, National Central University, Jhongli 320, TaiwanThe transient elongational viscosity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="sans-serif">η</mi><mi mathvariant="normal">e</mi></msub><mrow><mo>(</mo><mi mathvariant="normal">t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of the polymer melt is known to exhibit strain hardening, which depends on the strain rate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mi mathvariant="sans-serif">ε</mi><mo>˙</mo></mover></mrow></semantics></math></inline-formula>. This phenomenon was elucidated by the difference of chain stretching in the entanglement network between extension and shear. However, to date, the microscopic evolution of polymer melt has not been fully statistically analyzed. In this work, the radial size distributions <i>P</i>(<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="normal">R</mi><mi mathvariant="normal">g</mi></msub><mrow><mo>,</mo><mi mathvariant="normal">t</mi></mrow></mrow></semantics></math></inline-formula>) of linear polymers are explored by dissipative particle dynamics during the stretching processes. In uniaxial extensional flow, it is observed that the mean radius of gyration <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover><mi mathvariant="normal">R</mi><mo>¯</mo></mover></mrow><mi mathvariant="normal">g</mi></msub><mrow><mo>(</mo><mi mathvariant="normal">t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and standard deviation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi mathvariant="sans-serif">σ</mi><mo>(</mo><mi mathvariant="normal">t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> remain unchanged until the onset of strain hardening, corresponding to linear viscoelasticity. Both <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover><mi mathvariant="normal">R</mi><mo>¯</mo></mover></mrow><mi mathvariant="normal">g</mi></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">σ</mi></semantics></math></inline-formula> rise rapidly in the non-linear regime, and bimodal size distribution can emerge. Moreover, the onset of strain hardening is found to be insensitive to the Hencky strain (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover><mi mathvariant="sans-serif">ε</mi><mo>˙</mo></mover></mrow><mi mathvariant="normal">H</mi></msub><mi mathvariant="normal">t</mi></mrow></semantics></math></inline-formula>) and chain length (N).https://www.mdpi.com/2073-4360/15/9/2067microstructural dynamicselongational viscositystrain hardeningradial size distributiondissipative particle dynamics
spellingShingle Ming-Chang Hsieh
Yu-Hao Tsao
Yu-Jane Sheng
Heng-Kwong Tsao
Microstructural Dynamics of Polymer Melts during Stretching: Radial Size Distribution
Polymers
microstructural dynamics
elongational viscosity
strain hardening
radial size distribution
dissipative particle dynamics
title Microstructural Dynamics of Polymer Melts during Stretching: Radial Size Distribution
title_full Microstructural Dynamics of Polymer Melts during Stretching: Radial Size Distribution
title_fullStr Microstructural Dynamics of Polymer Melts during Stretching: Radial Size Distribution
title_full_unstemmed Microstructural Dynamics of Polymer Melts during Stretching: Radial Size Distribution
title_short Microstructural Dynamics of Polymer Melts during Stretching: Radial Size Distribution
title_sort microstructural dynamics of polymer melts during stretching radial size distribution
topic microstructural dynamics
elongational viscosity
strain hardening
radial size distribution
dissipative particle dynamics
url https://www.mdpi.com/2073-4360/15/9/2067
work_keys_str_mv AT mingchanghsieh microstructuraldynamicsofpolymermeltsduringstretchingradialsizedistribution
AT yuhaotsao microstructuraldynamicsofpolymermeltsduringstretchingradialsizedistribution
AT yujanesheng microstructuraldynamicsofpolymermeltsduringstretchingradialsizedistribution
AT hengkwongtsao microstructuraldynamicsofpolymermeltsduringstretchingradialsizedistribution