Fixed Point Results for Fractal Generation in Extended Jungck–SP Orbit

In this paper, we extend Jungck&#x2013;SP iteration with <inline-formula> <tex-math notation="LaTeX">$s$ </tex-math></inline-formula>&#x2013;convexity in second sense and define its orbit. We prove the fixed point results for fractal generation via extended...

Full description

Bibliographic Details
Main Authors: Xiangyang Li, Muhammad Tanveer, Mujahid Abbas, Maqbool Ahmad, Young Chel Kwun, Jing Liu
Format: Article
Language:English
Published: IEEE 2019-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8890803/
Description
Summary:In this paper, we extend Jungck&#x2013;SP iteration with <inline-formula> <tex-math notation="LaTeX">$s$ </tex-math></inline-formula>&#x2013;convexity in second sense and define its orbit. We prove the fixed point results for fractal generation via extended iteration and utilize these results to develop algorithms for fractal visualization. Moreover, we present some complex graphs of Julia and Mandelbrot sets in Jungck&#x2013;SP orbit with <inline-formula> <tex-math notation="LaTeX">$s$ </tex-math></inline-formula>&#x2013;convexity. We also present some examples to show the variation in images with involved parameters.
ISSN:2169-3536