Failure probability calculations of silicon carbide composite claddings under loss-of-coolant accidents

BackgroundSilicon carbide (SiC) composite claddings are candidate solutions for accident resistant fuel claddings in light water reactors.PurposeThis study aims to estimate the failure probability of a double-layer structured SiC cladding under a loss-of-coolant accident (LOCA).MethodsBased on a fai...

Full description

Bibliographic Details
Main Authors: CAO Liwen, YI Boquan, HAO Zulong
Format: Article
Language:zho
Published: Science Press 2023-09-01
Series:He jishu
Subjects:
Online Access:http://www.hjs.sinap.ac.cn/thesisDetails#10.11889/j.0253-3219.2023.hjs.46.090603&lang=zh
Description
Summary:BackgroundSilicon carbide (SiC) composite claddings are candidate solutions for accident resistant fuel claddings in light water reactors.PurposeThis study aims to estimate the failure probability of a double-layer structured SiC cladding under a loss-of-coolant accident (LOCA).MethodsBased on a failure probability calculation method for SiC composite cladding, a quasi-steady state method was used to simulate and calculate the SiC composite cladding failure probability under transient conditions. Sensitivity analysis of the two characteristic parameters of Weibull distribution was performed by analyzing the proportion of various stresses under accident conditions. The effects of different burn-up conditions on the failure probability were investigated, and the failure probability of the cladding under different layer thickness ratios was simulated.Results & ConclusionsSimulation results indicate that the transient failure probability of SiC composite claddings is significantly affected by changes in the proportion of the composite layer and Weibull parameter, as well as the occurrence of LOCAs under different burn-up conditions. This study makes contribution to the development and design of accident resistant fuel claddings, providing reference for further investigations on the failure probability of SiC composite claddings.
ISSN:0253-3219