Members of the ELMOD protein family specify formation of distinct aperture domains on the Arabidopsis pollen surface
Pollen apertures, the characteristic gaps in pollen wall exine, have emerged as a model for studying the formation of distinct plasma membrane domains. In each species, aperture number, position, and morphology are typically fixed; across species they vary widely. During pollen development, certain...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
eLife Sciences Publications Ltd
2021-09-01
|
Series: | eLife |
Subjects: | |
Online Access: | https://elifesciences.org/articles/71061 |
_version_ | 1811199855833382912 |
---|---|
author | Yuan Zhou Prativa Amom Sarah H Reeder Byung Ha Lee Adam Helton Anna A Dobritsa |
author_facet | Yuan Zhou Prativa Amom Sarah H Reeder Byung Ha Lee Adam Helton Anna A Dobritsa |
author_sort | Yuan Zhou |
collection | DOAJ |
description | Pollen apertures, the characteristic gaps in pollen wall exine, have emerged as a model for studying the formation of distinct plasma membrane domains. In each species, aperture number, position, and morphology are typically fixed; across species they vary widely. During pollen development, certain plasma membrane domains attract specific proteins and lipids and become protected from exine deposition, developing into apertures. However, how these aperture domains are selected is unknown. Here, we demonstrate that patterns of aperture domains in Arabidopsis are controlled by the members of the ancient ELMOD protein family, which, although important in animals, has not been studied in plants. We show that two members of this family, MACARON (MCR) and ELMOD_A, act upstream of the previously discovered aperture proteins and that their expression levels influence the number of aperture domains that form on the surface of developing pollen grains. We also show that a third ELMOD family member, ELMOD_E, can interfere with MCR and ELMOD_A activities, changing aperture morphology and producing new aperture patterns. Our findings reveal key players controlling early steps in aperture domain formation, identify residues important for their function, and open new avenues for investigating how diversity of aperture patterns in nature is achieved. |
first_indexed | 2024-04-12T01:54:19Z |
format | Article |
id | doaj.art-f6864b903768411f807a9d24e9ea219a |
institution | Directory Open Access Journal |
issn | 2050-084X |
language | English |
last_indexed | 2024-04-12T01:54:19Z |
publishDate | 2021-09-01 |
publisher | eLife Sciences Publications Ltd |
record_format | Article |
series | eLife |
spelling | doaj.art-f6864b903768411f807a9d24e9ea219a2022-12-22T03:52:50ZengeLife Sciences Publications LtdeLife2050-084X2021-09-011010.7554/eLife.71061Members of the ELMOD protein family specify formation of distinct aperture domains on the Arabidopsis pollen surfaceYuan Zhou0https://orcid.org/0000-0002-3598-958XPrativa Amom1Sarah H Reeder2Byung Ha Lee3Adam Helton4https://orcid.org/0000-0003-2948-2368Anna A Dobritsa5https://orcid.org/0000-0003-2987-1718Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, United StatesDepartment of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, United StatesDepartment of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, United StatesDepartment of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, United StatesDepartment of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, United StatesDepartment of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, United StatesPollen apertures, the characteristic gaps in pollen wall exine, have emerged as a model for studying the formation of distinct plasma membrane domains. In each species, aperture number, position, and morphology are typically fixed; across species they vary widely. During pollen development, certain plasma membrane domains attract specific proteins and lipids and become protected from exine deposition, developing into apertures. However, how these aperture domains are selected is unknown. Here, we demonstrate that patterns of aperture domains in Arabidopsis are controlled by the members of the ancient ELMOD protein family, which, although important in animals, has not been studied in plants. We show that two members of this family, MACARON (MCR) and ELMOD_A, act upstream of the previously discovered aperture proteins and that their expression levels influence the number of aperture domains that form on the surface of developing pollen grains. We also show that a third ELMOD family member, ELMOD_E, can interfere with MCR and ELMOD_A activities, changing aperture morphology and producing new aperture patterns. Our findings reveal key players controlling early steps in aperture domain formation, identify residues important for their function, and open new avenues for investigating how diversity of aperture patterns in nature is achieved.https://elifesciences.org/articles/71061pollenpollen aperturemembrane domainpattern formationELMODMCR |
spellingShingle | Yuan Zhou Prativa Amom Sarah H Reeder Byung Ha Lee Adam Helton Anna A Dobritsa Members of the ELMOD protein family specify formation of distinct aperture domains on the Arabidopsis pollen surface eLife pollen pollen aperture membrane domain pattern formation ELMOD MCR |
title | Members of the ELMOD protein family specify formation of distinct aperture domains on the Arabidopsis pollen surface |
title_full | Members of the ELMOD protein family specify formation of distinct aperture domains on the Arabidopsis pollen surface |
title_fullStr | Members of the ELMOD protein family specify formation of distinct aperture domains on the Arabidopsis pollen surface |
title_full_unstemmed | Members of the ELMOD protein family specify formation of distinct aperture domains on the Arabidopsis pollen surface |
title_short | Members of the ELMOD protein family specify formation of distinct aperture domains on the Arabidopsis pollen surface |
title_sort | members of the elmod protein family specify formation of distinct aperture domains on the arabidopsis pollen surface |
topic | pollen pollen aperture membrane domain pattern formation ELMOD MCR |
url | https://elifesciences.org/articles/71061 |
work_keys_str_mv | AT yuanzhou membersoftheelmodproteinfamilyspecifyformationofdistinctaperturedomainsonthearabidopsispollensurface AT prativaamom membersoftheelmodproteinfamilyspecifyformationofdistinctaperturedomainsonthearabidopsispollensurface AT sarahhreeder membersoftheelmodproteinfamilyspecifyformationofdistinctaperturedomainsonthearabidopsispollensurface AT byunghalee membersoftheelmodproteinfamilyspecifyformationofdistinctaperturedomainsonthearabidopsispollensurface AT adamhelton membersoftheelmodproteinfamilyspecifyformationofdistinctaperturedomainsonthearabidopsispollensurface AT annaadobritsa membersoftheelmodproteinfamilyspecifyformationofdistinctaperturedomainsonthearabidopsispollensurface |