Nickel-Doped Ceria Nanoparticles: The Effect of Annealing on Room Temperature Ferromagnetism

Nickel-doped cerium dioxide nanoparticles exhibit room temperature ferromagnetism due to high oxygen mobility within the doped CeO2 lattice. CeO2 is an excellent doping matrix as it can lose oxygen whilst retaining its structure. This leads to increased oxygen mobility within the fluorite CeO2 latti...

Full description

Bibliographic Details
Main Authors: Joseph C. Bear, Paul D. McNaughter, Paul Southern, Paul O’Brien, Charles W. Dunnill
Format: Article
Language:English
Published: MDPI AG 2015-08-01
Series:Crystals
Subjects:
Online Access:http://www.mdpi.com/2073-4352/5/3/312
Description
Summary:Nickel-doped cerium dioxide nanoparticles exhibit room temperature ferromagnetism due to high oxygen mobility within the doped CeO2 lattice. CeO2 is an excellent doping matrix as it can lose oxygen whilst retaining its structure. This leads to increased oxygen mobility within the fluorite CeO2 lattice, leading to the formation of Ce3+ and Ce4+ species and hence doped ceria shows a high propensity for numerous catalytic processes. Magnetic ceria are important in several applications from magnetic data storage devices to magnetically recoverable catalysts. We investigate the effect doping nickel into a CeO2 lattice has on the room temperature ferromagnetism in monodisperse cerium dioxide nanoparticles synthesised by the thermal decomposition of cerium(III) and nickel(II) oleate metal organic precursors before and after annealing. The composition of nanoparticles pre- and post-anneal were analysed using: TEM (transmission electron microscopy), XPS (X-ray photoelectron spectroscopy), EDS (energy-dispersive X-ray spectroscopy) and XRD (X-ray diffraction). Optical and magnetic properties were also studied using UV/Visible spectroscopy and SQUID (superconducting interference device) magnetometry respectively.
ISSN:2073-4352