An Error Compensation Method for Improving the Properties of a Digital Henon Map Based on the Generalized Mean Value Theorem of Differentiation
Continuous chaos may collapse in the digital world. This study proposes a method of error compensation for a two-dimensional digital system based on the generalized mean value theorem of differentiation that can restore the fundamental performance of chaotic systems. Different from other methods, th...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-12-01
|
Series: | Entropy |
Subjects: | |
Online Access: | https://www.mdpi.com/1099-4300/23/12/1628 |
Summary: | Continuous chaos may collapse in the digital world. This study proposes a method of error compensation for a two-dimensional digital system based on the generalized mean value theorem of differentiation that can restore the fundamental performance of chaotic systems. Different from other methods, the compensation sequence of our method comes from the chaotic system itself and can be applied to higher-dimensional digital chaotic systems. The experimental results show that the improved system is highly consistent with the real chaotic system, and it has excellent chaotic characteristics such as high complexity, randomness, and ergodicity. |
---|---|
ISSN: | 1099-4300 |