<i>n</i>-<i>K</i>-Increasing Aggregation Functions

We introduce and discuss the concept of <i>n</i>-ary <i>K</i>-increasing fusion functions and <i>n</i>-ary <i>K</i>-increasing aggregation functions, <i>K</i> being a subset of the index set <inline-formula><math xmlns="http:/...

Full description

Bibliographic Details
Main Authors: Radko Mesiar, Anna Kolesárová, Adam Šeliga, Radomír Halaš
Format: Article
Language:English
Published: MDPI AG 2023-11-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/12/1065
_version_ 1797382071771987968
author Radko Mesiar
Anna Kolesárová
Adam Šeliga
Radomír Halaš
author_facet Radko Mesiar
Anna Kolesárová
Adam Šeliga
Radomír Halaš
author_sort Radko Mesiar
collection DOAJ
description We introduce and discuss the concept of <i>n</i>-ary <i>K</i>-increasing fusion functions and <i>n</i>-ary <i>K</i>-increasing aggregation functions, <i>K</i> being a subset of the index set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></mrow></semantics></math></inline-formula> indicating in which variables a considered function is increasing. It is also assumed that this function is decreasing in all other variables. We show that each <i>n</i>-ary <i>K</i>-increasing aggregation function is generated by some aggregation function which enables us to introduce and study the properties of <i>n</i>-ary <i>K</i>-increasing aggregation functions related to the properties of their generating aggregation functions. In particular, we also discuss binary <i>K</i>-increasing aggregation functions, including fuzzy implication and complication functions, among others.
first_indexed 2024-03-08T21:01:11Z
format Article
id doaj.art-f6acb6f6fdd549bf9556ab0f635098d4
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-08T21:01:11Z
publishDate 2023-11-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-f6acb6f6fdd549bf9556ab0f635098d42023-12-22T13:53:08ZengMDPI AGAxioms2075-16802023-11-011212106510.3390/axioms12121065<i>n</i>-<i>K</i>-Increasing Aggregation FunctionsRadko Mesiar0Anna Kolesárová1Adam Šeliga2Radomír Halaš3Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Slovak University of Technology, Radlinského 11, 810 05 Bratislava, SlovakiaDepartment of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Slovak University of Technology, Radlinského 11, 810 05 Bratislava, SlovakiaDepartment of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Slovak University of Technology, Radlinského 11, 810 05 Bratislava, SlovakiaDepartment of Algebra and Geometry, Faculty of Science, Palacký Univeristy Olomouc, 771 46 Olomouc, Czech RepublicWe introduce and discuss the concept of <i>n</i>-ary <i>K</i>-increasing fusion functions and <i>n</i>-ary <i>K</i>-increasing aggregation functions, <i>K</i> being a subset of the index set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></mrow></semantics></math></inline-formula> indicating in which variables a considered function is increasing. It is also assumed that this function is decreasing in all other variables. We show that each <i>n</i>-ary <i>K</i>-increasing aggregation function is generated by some aggregation function which enables us to introduce and study the properties of <i>n</i>-ary <i>K</i>-increasing aggregation functions related to the properties of their generating aggregation functions. In particular, we also discuss binary <i>K</i>-increasing aggregation functions, including fuzzy implication and complication functions, among others.https://www.mdpi.com/2075-1680/12/12/1065aggregation functionfusion function<i>n</i>-<i>K</i>-increasing aggregation function<i>n</i>-<i>K</i>-increasing fusion function
spellingShingle Radko Mesiar
Anna Kolesárová
Adam Šeliga
Radomír Halaš
<i>n</i>-<i>K</i>-Increasing Aggregation Functions
Axioms
aggregation function
fusion function
<i>n</i>-<i>K</i>-increasing aggregation function
<i>n</i>-<i>K</i>-increasing fusion function
title <i>n</i>-<i>K</i>-Increasing Aggregation Functions
title_full <i>n</i>-<i>K</i>-Increasing Aggregation Functions
title_fullStr <i>n</i>-<i>K</i>-Increasing Aggregation Functions
title_full_unstemmed <i>n</i>-<i>K</i>-Increasing Aggregation Functions
title_short <i>n</i>-<i>K</i>-Increasing Aggregation Functions
title_sort i n i i k i increasing aggregation functions
topic aggregation function
fusion function
<i>n</i>-<i>K</i>-increasing aggregation function
<i>n</i>-<i>K</i>-increasing fusion function
url https://www.mdpi.com/2075-1680/12/12/1065
work_keys_str_mv AT radkomesiar iniikiincreasingaggregationfunctions
AT annakolesarova iniikiincreasingaggregationfunctions
AT adamseliga iniikiincreasingaggregationfunctions
AT radomirhalas iniikiincreasingaggregationfunctions