Estimating Service Quality in Industrial Internet-of-Things Monitoring Applications With Blockchain

Internet of Things (IoT) plays a big role in automating information generation and consumption in industrial monitoring applications. Blockchain can allow this information to be stored in a manner that is both accessible and reliable for the IoT devices to work with. Blockchain has the capability to...

Full description

Bibliographic Details
Main Authors: Ananda Maiti, Ali Raza, Byeong Ho Kang, Lachlan Hardy
Format: Article
Language:English
Published: IEEE 2019-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8876654/
Description
Summary:Internet of Things (IoT) plays a big role in automating information generation and consumption in industrial monitoring applications. Blockchain can allow this information to be stored in a manner that is both accessible and reliable for the IoT devices to work with. Blockchain has the capability to collect data from IoT devices and store it in a distributed manner that prevents tampering with the data. This paper discusses the use of blockchain to calculate the Service Quality (SQ) in an Industrial IoT for monitoring application. The proposed framework looks at the blockchain as a finite number of fragmented pieces of data corresponding to a specific industrial process. The SQ is expressed as penalties which is the difference between the expected IoT sensor values and the actual sensor data in reported events from the IoT devices. It also moderates the penalty between similar industrial processes based on each other. The moderation allows better understanding of the system functions and identification of specific problems rather than simply recording the sensor data for a single process. Furthermore, this paper analyzes private blockchains for suitability in IIoT and summarizes some key challenges for IoT to be used with blockchain in context of the proposed framework. The paper uses supply chain as a use case scenario for describing the proposed framework and presents results on its technical feasibility.
ISSN:2169-3536