Reducing the impact load arising from the looseness in joints of articulating cranes

A modification of hinge joints in articulating cranes is proposed in order to reduce the impact load arising from the joint looseness. The idea is to provide an additional support for the joint pin using elastic elements. As the contact surfaces of the pin and the eyes of the joint wear out these el...

Full description

Bibliographic Details
Main Authors: Lagerev I.A., Milto A.A., Lagerev A.V.
Format: Article
Language:deu
Published: Academician I.G. Petrovskii Bryansk State University 2015-12-01
Series:Naučno-Tehničeskij Vestnik Brânskogo Gosudarstvennogo Universiteta
Subjects:
Online Access:http://ntv-brgu.ru/wp-content/arhiv/2015-N2/2015-02-05.pdf
Description
Summary:A modification of hinge joints in articulating cranes is proposed in order to reduce the impact load arising from the joint looseness. The idea is to provide an additional support for the joint pin using elastic elements. As the contact surfaces of the pin and the eyes of the joint wear out these elements start absorbing the shock load, caused by developed looseness in the joint. The dynamics and stress analysis of an articulating crane with one loose joint is performed to illustrate the difference between the classic and modified joint assembly. The numerical simulations are performed using the developed software KBCrane. The simulation results demonstrate a decrease in peak boom stress and cargo acceleration by up to 2.9 and 10.3 times respectively in a crane with modified hinge joint compared to a crane with classic hinge joint.
ISSN:2413-9920