Norm inequalities involving a special class of functions for sector matrices

Abstract In this paper, we present some unitarily invariant norm inequalities for sector matrices involving a special class of functions. In particular, if Z = ( Z 11 Z 12 Z 21 Z 22 ) is a 2 n × 2 n $2n\times 2n$ matrix such that numerical range of Z is contained in a sector region S α $S_{\alpha }...

Full description

Bibliographic Details
Main Authors: Davood Afraz, Rahmatollah Lashkaripour, Mojtaba Bakherad
Format: Article
Language:English
Published: SpringerOpen 2020-05-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-020-02383-z
_version_ 1818241200637870080
author Davood Afraz
Rahmatollah Lashkaripour
Mojtaba Bakherad
author_facet Davood Afraz
Rahmatollah Lashkaripour
Mojtaba Bakherad
author_sort Davood Afraz
collection DOAJ
description Abstract In this paper, we present some unitarily invariant norm inequalities for sector matrices involving a special class of functions. In particular, if Z = ( Z 11 Z 12 Z 21 Z 22 ) is a 2 n × 2 n $2n\times 2n$ matrix such that numerical range of Z is contained in a sector region S α $S_{\alpha } $ for some α ∈ [ 0 , π 2 ) $\alpha \in [0,\frac{\pi }{2} ) $ , then, for a submultiplicative function h of the class C $\mathcal{C} $ and every unitarily invariant norm, we have ∥ h ( | Z i j | 2 ) ∥ ≤ ∥ h r ( sec ( α ) | Z 11 | ) ∥ 1 r ∥ h s ( sec ( α ) | Z 22 | ) ∥ 1 s , $$\begin{aligned} \bigl\Vert h \bigl( \vert Z_{ij} \vert ^{2} \bigr) \bigr\Vert &\leq \bigl\Vert h^{r} \bigl( \sec (\alpha ) \vert Z_{11} \vert \bigr) \bigr\Vert ^{\frac{1}{r} } \bigl\Vert h^{s} \bigl( \sec (\alpha ) \vert Z_{22} \vert \bigr) \bigr\Vert ^{ \frac{1}{s} }, \end{aligned}$$ where r and s are positive real numbers with 1 r + 1 s = 1 $\frac{1}{r}+\frac{1}{s}=1 $ and i , j = 1 , 2 $i,j=1,2$ . We also extend some unitarily invariant norm inequalities for sector matrices.
first_indexed 2024-12-12T13:25:34Z
format Article
id doaj.art-f6ff8fe829a6479bb04224507ad21a11
institution Directory Open Access Journal
issn 1029-242X
language English
last_indexed 2024-12-12T13:25:34Z
publishDate 2020-05-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-f6ff8fe829a6479bb04224507ad21a112022-12-22T00:23:12ZengSpringerOpenJournal of Inequalities and Applications1029-242X2020-05-012020111110.1186/s13660-020-02383-zNorm inequalities involving a special class of functions for sector matricesDavood Afraz0Rahmatollah Lashkaripour1Mojtaba Bakherad2Department of Mathematics, Faculty of Mathematics, University of Sistan and BaluchestanDepartment of Mathematics, Faculty of Mathematics, University of Sistan and BaluchestanDepartment of Mathematics, Faculty of Mathematics, University of Sistan and BaluchestanAbstract In this paper, we present some unitarily invariant norm inequalities for sector matrices involving a special class of functions. In particular, if Z = ( Z 11 Z 12 Z 21 Z 22 ) is a 2 n × 2 n $2n\times 2n$ matrix such that numerical range of Z is contained in a sector region S α $S_{\alpha } $ for some α ∈ [ 0 , π 2 ) $\alpha \in [0,\frac{\pi }{2} ) $ , then, for a submultiplicative function h of the class C $\mathcal{C} $ and every unitarily invariant norm, we have ∥ h ( | Z i j | 2 ) ∥ ≤ ∥ h r ( sec ( α ) | Z 11 | ) ∥ 1 r ∥ h s ( sec ( α ) | Z 22 | ) ∥ 1 s , $$\begin{aligned} \bigl\Vert h \bigl( \vert Z_{ij} \vert ^{2} \bigr) \bigr\Vert &\leq \bigl\Vert h^{r} \bigl( \sec (\alpha ) \vert Z_{11} \vert \bigr) \bigr\Vert ^{\frac{1}{r} } \bigl\Vert h^{s} \bigl( \sec (\alpha ) \vert Z_{22} \vert \bigr) \bigr\Vert ^{ \frac{1}{s} }, \end{aligned}$$ where r and s are positive real numbers with 1 r + 1 s = 1 $\frac{1}{r}+\frac{1}{s}=1 $ and i , j = 1 , 2 $i,j=1,2$ . We also extend some unitarily invariant norm inequalities for sector matrices.http://link.springer.com/article/10.1186/s13660-020-02383-zUnitarily invariant normAccrative–dissipative matrixNumerical rangeSector matrix
spellingShingle Davood Afraz
Rahmatollah Lashkaripour
Mojtaba Bakherad
Norm inequalities involving a special class of functions for sector matrices
Journal of Inequalities and Applications
Unitarily invariant norm
Accrative–dissipative matrix
Numerical range
Sector matrix
title Norm inequalities involving a special class of functions for sector matrices
title_full Norm inequalities involving a special class of functions for sector matrices
title_fullStr Norm inequalities involving a special class of functions for sector matrices
title_full_unstemmed Norm inequalities involving a special class of functions for sector matrices
title_short Norm inequalities involving a special class of functions for sector matrices
title_sort norm inequalities involving a special class of functions for sector matrices
topic Unitarily invariant norm
Accrative–dissipative matrix
Numerical range
Sector matrix
url http://link.springer.com/article/10.1186/s13660-020-02383-z
work_keys_str_mv AT davoodafraz norminequalitiesinvolvingaspecialclassoffunctionsforsectormatrices
AT rahmatollahlashkaripour norminequalitiesinvolvingaspecialclassoffunctionsforsectormatrices
AT mojtababakherad norminequalitiesinvolvingaspecialclassoffunctionsforsectormatrices