Pole decomposition of BFKL eigenvalue at zero conformal spin and the real part of digamma function
We consider the powers of leading order eigenvalue of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation at zero conformal spin. Using reflection identities of harmonic sums we demonstrate how involved generalized polygamma functions are introduced by pole separation of a rather simple digamma functi...
Main Authors: | Mohammad Joubat, Claudelle Capasia Madjuogang Sandeu, Alex Prygarin |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2024-01-01
|
Series: | Physics Letters B |
Online Access: | http://www.sciencedirect.com/science/article/pii/S0370269323006536 |
Similar Items
-
Real Valued Functions for the BFKL Eigenvalue
by: Mohammad Joubat, et al.
Published: (2021-11-01) -
Universal transcendentality limit of BFKL eigenvalue
by: Mohammad Joubat, et al.
Published: (2022-01-01) -
Hermitian separability of BFKL eigenvalue in Bethe–Salpeter approach
by: Mohammad Joubat, et al.
Published: (2020-12-01) -
BFKL eigenvalue and maximal alternation of harmonic sums
by: Alex Prygarin
Published: (2019-10-01) -
BFKL spectrum of N $$ \mathcal{N} $$ = 4: non-zero conformal spin
by: Mikhail Alfimov, et al.
Published: (2018-07-01)