MICKEY 2.0.85: A Secure and Lighter MICKEY 2.0 Cipher Variant with Improved Power Consumption for Smaller Devices in the IoT

Lightweight stream ciphers have attracted significant attention in the last two decades due to their security implementations in small devices with limited hardware. With low-power computation abilities, these devices consume less power, thus reducing costs. New directions in ultra-lightweight crypt...

Full description

Bibliographic Details
Main Authors: Ahmed Alamer, Ben Soh, David E. Brumbaugh
Format: Article
Language:English
Published: MDPI AG 2019-12-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/1/32
Description
Summary:Lightweight stream ciphers have attracted significant attention in the last two decades due to their security implementations in small devices with limited hardware. With low-power computation abilities, these devices consume less power, thus reducing costs. New directions in ultra-lightweight cryptosystem design include optimizing lightweight cryptosystems to work with a low number of gate equivalents (GEs); without affecting security, these designs consume less power via scaled-down versions of the Mutual Irregular Clocking KEYstream generator—version 2-(MICKEY 2.0) cipher. This study aims to obtain a scaled-down version of the MICKEY 2.0 cipher by modifying its internal state design via reducing shift registers and modifying the controlling bit positions to assure the ciphers’ pseudo-randomness. We measured these changes using the National Institutes of Standards and Testing (NIST) test suites, investigating the speed and power consumption of the proposed scaled-down version named MICKEY 2.0.85. The (85) refers to the new modified bit-lengths of each MICKEY 2.0 register. The results show that it is faster, requires less power, and needs fewer GEs. The proposed variant will enhance the security of applications, such asRadio-frequency identification (RFID) technology, sensor networks, and in Internet of things (IoT) in general. It also will enhance research on the optimization of existing lightweight cryptosystems.
ISSN:2073-8994