Liouville-type theorems for stable solutions of singular quasilinear elliptic equations in R^N

We prove a Liouville-type theorem for stable solution of the singular quasilinear elliptic equations $$\displaylines{ -\text{div}(|x|^{-ap}|\nabla u|^{p-2}\nabla u)=f(x)|u|^{q-1}u, \quad \text{in } \mathbb{R}^N, \cr -\text{div}(|x|^{-ap}|\nabla u|^{p-2}\nabla u)=f(x)e^u, \quad \text{in } \math...

Full description

Bibliographic Details
Main Authors: Caisheng Chen, Hongxue Song, Hongwei Yang
Format: Article
Language:English
Published: Texas State University 2018-03-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2018/81/abstr.html
Description
Summary:We prove a Liouville-type theorem for stable solution of the singular quasilinear elliptic equations $$\displaylines{ -\text{div}(|x|^{-ap}|\nabla u|^{p-2}\nabla u)=f(x)|u|^{q-1}u, \quad \text{in } \mathbb{R}^N, \cr -\text{div}(|x|^{-ap}|\nabla u|^{p-2}\nabla u)=f(x)e^u, \quad \text{in } \mathbb{R}^N }$$ where $2\le p<N, -\infty<a<(N-p)/p$ and the function f(x) is continuous and nonnegative in $\mathbb{R}^N\setminus\{0\}$ such that $f(x)\ge c_0|x|^{b}$ as $|x|\ge R_0$, with $b>-p(1+a)$ and $c_0>0$. The results hold for $1\le p-1<q=q_c(p,N,a,b)$ in the first equation, and for $2\le N<q_0(p,a,b)$ in the second equation. Here $q_0$ and $q_c$ are exponents, which are always larger than the classical critical ones and depend on the parameters a,b.
ISSN:1072-6691