Summary: | An unsolved ancient problem in position control of robot manipulators is to find a stability analysis that proves global asymptotic stability of the classical PID control in closed loop with robot manipulators. The practical evidence suggests that in fact the classical PID in industrial robots is a global regulator. The main goal of the present paper is theoretically to show why in the practice such a fact is achieved. We show that considering the natural saturations of every control stage in practical robots, the classical PID becomes a type of saturated nonlinear PID controller. In this work such a nonlinear PID controller with bounded torques for robot manipulators is proposed. This controller, unlike other saturated nonlinear PID controllers previously proposed, uses a single saturation for the three terms of the controller. Global asymptotical stability is proved via Lyapunov stability theory. Experimental results are presented in order to observe the performance of the proposed controller.
|