Whole-genome long-read sequencing to unveil Enterococcus antimicrobial resistance in dairy cattle farms exposed a widespread occurrence of Enterococcus lactis

ABSTRACTEnterococcus faecalis (Efs) and Enterococcus faecium (Efm) are major causes of multiresistant healthcare-associated or nosocomial infections. Efm has been traditionally divided into clades A (healthcare associated) and B (community associated) but clade B has been recently reassigned to Ente...

Full description

Bibliographic Details
Main Authors: Medelin Ocejo, Maitane Mugica, Beatriz Oporto, José Luis Lavín, Ana Hurtado
Format: Article
Language:English
Published: American Society for Microbiology 2024-02-01
Series:Microbiology Spectrum
Subjects:
Online Access:https://journals.asm.org/doi/10.1128/spectrum.03672-23
_version_ 1797322803944357888
author Medelin Ocejo
Maitane Mugica
Beatriz Oporto
José Luis Lavín
Ana Hurtado
author_facet Medelin Ocejo
Maitane Mugica
Beatriz Oporto
José Luis Lavín
Ana Hurtado
author_sort Medelin Ocejo
collection DOAJ
description ABSTRACTEnterococcus faecalis (Efs) and Enterococcus faecium (Efm) are major causes of multiresistant healthcare-associated or nosocomial infections. Efm has been traditionally divided into clades A (healthcare associated) and B (community associated) but clade B has been recently reassigned to Enterococcus lactis (Elc). However, identification techniques do not routinely differentiate Elc from Efm. As part of a longitudinal study to investigate the antimicrobial resistance of Enterococcus in dairy cattle, isolates initially identified as Efm were confirmed as Elc after Oxford-Nanopore long-fragment whole-genome sequencing and genome comparisons. An Efm-specific PCR assay was developed and used to identify isolates recovered from animal feces on five farms, resulting in 44 Efs, 23 Efm, and 59 Elc. Resistance, determined by broth microdilution, was more frequent in Efs than in Efm and Elc but all isolates were susceptible to ampicillin, daptomycin, teicoplanin, tigecycline, and vancomycin. Genome sequencing analysis of 32 isolates identified 23 antimicrobial resistance genes (ARGs, mostly plasmid-located) and 2 single nucleotide polymorphisms associated with resistance to 10 antimicrobial classes, showing high concordance with phenotypic resistance. Notably, linezolid resistance in Efm was encoded by the optrA gene, located in plasmids downstream of the fexA gene. Although most Elc lacked virulence factors and genetic determinants of resistance, one isolate carried a plasmid with eight ARGs. This study showed that Elc is more prevalent than Efm in dairy cattle but carries fewer ARGs and virulence genes. However, Elc can carry multi-drug-resistant plasmids like those harbored by Efm and could act as a donor of ARGs for other pathogenic enterococcal species.IMPORTANCEEnterococcus species identification is crucial due to differences in pathogenicity and antibiotic resistance profiles. The failure of traditional methods or whole-genome sequencing-based taxonomic classifiers to distinguish Enterococcus lactis (Elc) from Enterococcus faecium (Efm) results in a biased interpretation of Efm epidemiology. The Efm species-specific real-time PCR assay developed here will help to properly identify Efm (only the formerly known clade A) in future studies. Here, we showed that Elc is prevalent in dairy cattle, and although this species carries fewer genetic determinants of resistance (GDRs) than Enterococcus faecalis (Efs) and Efm, it can carry multi-drug-resistant (MDR) plasmids and could act as a donor of resistance genes for other pathogenic enterococcal species. Although all isolates (Efs, Efm, and Elc) were susceptible to critically or highly important antibiotics like daptomycin, teicoplanin, tigecycline, and vancomycin, the presence of GDRs in MDR-plasmids is a concern since antimicrobials commonly used in livestock could co-select and confer resistance to critically important antimicrobials not used in food-producing animals.
first_indexed 2024-03-08T05:19:31Z
format Article
id doaj.art-f724180cc66740f0b8b7d8b7750ea7ac
institution Directory Open Access Journal
issn 2165-0497
language English
last_indexed 2024-03-08T05:19:31Z
publishDate 2024-02-01
publisher American Society for Microbiology
record_format Article
series Microbiology Spectrum
spelling doaj.art-f724180cc66740f0b8b7d8b7750ea7ac2024-02-06T14:04:55ZengAmerican Society for MicrobiologyMicrobiology Spectrum2165-04972024-02-0112210.1128/spectrum.03672-23Whole-genome long-read sequencing to unveil Enterococcus antimicrobial resistance in dairy cattle farms exposed a widespread occurrence of Enterococcus lactisMedelin Ocejo0Maitane Mugica1Beatriz Oporto2José Luis Lavín3Ana Hurtado4Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, SpainAnimal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, SpainAnimal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, SpainApplied Mathematics Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, SpainAnimal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, SpainABSTRACTEnterococcus faecalis (Efs) and Enterococcus faecium (Efm) are major causes of multiresistant healthcare-associated or nosocomial infections. Efm has been traditionally divided into clades A (healthcare associated) and B (community associated) but clade B has been recently reassigned to Enterococcus lactis (Elc). However, identification techniques do not routinely differentiate Elc from Efm. As part of a longitudinal study to investigate the antimicrobial resistance of Enterococcus in dairy cattle, isolates initially identified as Efm were confirmed as Elc after Oxford-Nanopore long-fragment whole-genome sequencing and genome comparisons. An Efm-specific PCR assay was developed and used to identify isolates recovered from animal feces on five farms, resulting in 44 Efs, 23 Efm, and 59 Elc. Resistance, determined by broth microdilution, was more frequent in Efs than in Efm and Elc but all isolates were susceptible to ampicillin, daptomycin, teicoplanin, tigecycline, and vancomycin. Genome sequencing analysis of 32 isolates identified 23 antimicrobial resistance genes (ARGs, mostly plasmid-located) and 2 single nucleotide polymorphisms associated with resistance to 10 antimicrobial classes, showing high concordance with phenotypic resistance. Notably, linezolid resistance in Efm was encoded by the optrA gene, located in plasmids downstream of the fexA gene. Although most Elc lacked virulence factors and genetic determinants of resistance, one isolate carried a plasmid with eight ARGs. This study showed that Elc is more prevalent than Efm in dairy cattle but carries fewer ARGs and virulence genes. However, Elc can carry multi-drug-resistant plasmids like those harbored by Efm and could act as a donor of ARGs for other pathogenic enterococcal species.IMPORTANCEEnterococcus species identification is crucial due to differences in pathogenicity and antibiotic resistance profiles. The failure of traditional methods or whole-genome sequencing-based taxonomic classifiers to distinguish Enterococcus lactis (Elc) from Enterococcus faecium (Efm) results in a biased interpretation of Efm epidemiology. The Efm species-specific real-time PCR assay developed here will help to properly identify Efm (only the formerly known clade A) in future studies. Here, we showed that Elc is prevalent in dairy cattle, and although this species carries fewer genetic determinants of resistance (GDRs) than Enterococcus faecalis (Efs) and Efm, it can carry multi-drug-resistant (MDR) plasmids and could act as a donor of resistance genes for other pathogenic enterococcal species. Although all isolates (Efs, Efm, and Elc) were susceptible to critically or highly important antibiotics like daptomycin, teicoplanin, tigecycline, and vancomycin, the presence of GDRs in MDR-plasmids is a concern since antimicrobials commonly used in livestock could co-select and confer resistance to critically important antimicrobials not used in food-producing animals.https://journals.asm.org/doi/10.1128/spectrum.03672-23antimicrobial resistancedairy cattleminimum inhibitory concentrationwhole-genome sequencinglong-read WGSEnterococcus
spellingShingle Medelin Ocejo
Maitane Mugica
Beatriz Oporto
José Luis Lavín
Ana Hurtado
Whole-genome long-read sequencing to unveil Enterococcus antimicrobial resistance in dairy cattle farms exposed a widespread occurrence of Enterococcus lactis
Microbiology Spectrum
antimicrobial resistance
dairy cattle
minimum inhibitory concentration
whole-genome sequencing
long-read WGS
Enterococcus
title Whole-genome long-read sequencing to unveil Enterococcus antimicrobial resistance in dairy cattle farms exposed a widespread occurrence of Enterococcus lactis
title_full Whole-genome long-read sequencing to unveil Enterococcus antimicrobial resistance in dairy cattle farms exposed a widespread occurrence of Enterococcus lactis
title_fullStr Whole-genome long-read sequencing to unveil Enterococcus antimicrobial resistance in dairy cattle farms exposed a widespread occurrence of Enterococcus lactis
title_full_unstemmed Whole-genome long-read sequencing to unveil Enterococcus antimicrobial resistance in dairy cattle farms exposed a widespread occurrence of Enterococcus lactis
title_short Whole-genome long-read sequencing to unveil Enterococcus antimicrobial resistance in dairy cattle farms exposed a widespread occurrence of Enterococcus lactis
title_sort whole genome long read sequencing to unveil enterococcus antimicrobial resistance in dairy cattle farms exposed a widespread occurrence of enterococcus lactis
topic antimicrobial resistance
dairy cattle
minimum inhibitory concentration
whole-genome sequencing
long-read WGS
Enterococcus
url https://journals.asm.org/doi/10.1128/spectrum.03672-23
work_keys_str_mv AT medelinocejo wholegenomelongreadsequencingtounveilenterococcusantimicrobialresistanceindairycattlefarmsexposedawidespreadoccurrenceofenterococcuslactis
AT maitanemugica wholegenomelongreadsequencingtounveilenterococcusantimicrobialresistanceindairycattlefarmsexposedawidespreadoccurrenceofenterococcuslactis
AT beatrizoporto wholegenomelongreadsequencingtounveilenterococcusantimicrobialresistanceindairycattlefarmsexposedawidespreadoccurrenceofenterococcuslactis
AT joseluislavin wholegenomelongreadsequencingtounveilenterococcusantimicrobialresistanceindairycattlefarmsexposedawidespreadoccurrenceofenterococcuslactis
AT anahurtado wholegenomelongreadsequencingtounveilenterococcusantimicrobialresistanceindairycattlefarmsexposedawidespreadoccurrenceofenterococcuslactis