Numerical investigation of the length of a polymer fuel cell on energy production in asymmetric flow and hydrogen production process

In this study, a three-dimensional simulation of fuel cell (FUC) by using FEM is presented. The values of electrolyte potential (EPL), cell power (CPR), hydrogen mole fraction (HMF), water mole fraction (WMF), oxygen mole fraction (OMF), pressure, and rate changes in the channels are determined by c...

Full description

Bibliographic Details
Main Authors: Jawed Mustafa, Saeed Alqaed, S. Mohammad Sajadi, Hikmet Ş. Aybar
Format: Article
Language:English
Published: Elsevier 2024-01-01
Series:Case Studies in Thermal Engineering
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2214157X23012352
Description
Summary:In this study, a three-dimensional simulation of fuel cell (FUC) by using FEM is presented. The values of electrolyte potential (EPL), cell power (CPR), hydrogen mole fraction (HMF), water mole fraction (WMF), oxygen mole fraction (OMF), pressure, and rate changes in the channels are determined by changing the voltage from 0.1 to 0.8 V and the length of the hydrogen and oxygen channels (HOC) from 5 to 20 mm. This study is carried out by employing COMSOL software. The results reveal that an enhancement in the length of HOC reduces the amount of CPR. The maximum amount of CPR occurs when the HOC are 5 mm and the voltage is 0.5 V. The minimum amount of CPR corresponds to the channel length of 20 mm and a voltage of 0.8 V. At higher voltages, the use of longer channels increases the EPL. An increment in the voltage significantly reduces the EPL, while increasing the length of the HOC intensifies the EPL. An enhancement in the length of the channel and increasing the applied voltage results in a reduction in the HMF. An increase in the voltage results in a more significant reduction in HMF for larger lengths of the HOC.
ISSN:2214-157X