Terahertz Hollow Core Antiresonant Fiber with Metamaterial Cladding

A hollow core antiresonant photonic crystal fiber (HC-ARPCF) with metal inclusions is numerically analyzed for transmission of terahertz (THz) waves. The propagation of fundamental and higher order modes are investigated and the results are compared with conventional dielectric antiresonant (AR) fib...

Full description

Bibliographic Details
Main Authors: Jakeya Sultana, Md. Saiful Islam, Cristiano M. B. Cordeiro, Alex Dinovitser, Mayank Kaushik, Brian W.-H. Ng, Derek Abbott
Format: Article
Language:English
Published: MDPI AG 2020-02-01
Series:Fibers
Subjects:
Online Access:https://www.mdpi.com/2079-6439/8/2/14
Description
Summary:A hollow core antiresonant photonic crystal fiber (HC-ARPCF) with metal inclusions is numerically analyzed for transmission of terahertz (THz) waves. The propagation of fundamental and higher order modes are investigated and the results are compared with conventional dielectric antiresonant (AR) fiber designs. Simulation results show that broadband terahertz radiation can be guided with six times lower loss in such hollow core fibers with metallic inclusions, compared to tube lattice fiber, covering a single mode bandwidth (BW) of 700 GHz.
ISSN:2079-6439