Viscosity-Regulated Control of RNA Microstructure Fabrication

The development of RNA self-assemblies offers a powerful platform for a wide range of biomedical applications. The fabrication process has become more elaborate in order to achieve functional structures with maximized potential. As a facile means to control the structure, here, we report a new appro...

Full description

Bibliographic Details
Main Authors: Sunghyun Moon, Hyejin Kim, Dajeong Kim, Jong Bum Lee
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/13/3/454
Description
Summary:The development of RNA self-assemblies offers a powerful platform for a wide range of biomedical applications. The fabrication process has become more elaborate in order to achieve functional structures with maximized potential. As a facile means to control the structure, here, we report a new approach to manipulate the polymerization rate and subsequent self-assembly process through regulation of the reaction viscosity. As the RNA polymerization rate has a dependence on solution viscosity, the resulting assembly, crystallization, and overall sizes of the product could be manipulated. The simple and precise control of RNA polymerization and self-assembly by reaction viscosity will provide a way to widen the utility of RNA-based materials.
ISSN:2073-4360