On the viscous Burgers equation in unbounded domain

In this paper we investigate the existence and uniqueness of global solutions, and a rate stability for the energy related with a Cauchy problem to the viscous Burgers equation in unbounded domain $\mathbb{R}\times(0,\infty)$. Some aspects associated with a Cauchy problem are presented in order to e...

Full description

Bibliographic Details
Main Authors: Juan Limaco, Haroldo Rodrigues Clark, L. A. Medeiros
Format: Article
Language:English
Published: University of Szeged 2010-04-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=478
_version_ 1797830750129618944
author Juan Limaco
Haroldo Rodrigues Clark
L. A. Medeiros
author_facet Juan Limaco
Haroldo Rodrigues Clark
L. A. Medeiros
author_sort Juan Limaco
collection DOAJ
description In this paper we investigate the existence and uniqueness of global solutions, and a rate stability for the energy related with a Cauchy problem to the viscous Burgers equation in unbounded domain $\mathbb{R}\times(0,\infty)$. Some aspects associated with a Cauchy problem are presented in order to employ the approximations of Faedo-Galerkin in whole real line $\mathbb{R}$. This becomes possible due to the introduction of weight Sobolev spaces which allow us to use arguments of compactness in the Sobolev spaces.
first_indexed 2024-04-09T13:41:05Z
format Article
id doaj.art-f73f4775a2fc4ed291738a787e0647d3
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:41:05Z
publishDate 2010-04-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-f73f4775a2fc4ed291738a787e0647d32023-05-09T07:53:00ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752010-04-0120101812310.14232/ejqtde.2010.1.18478On the viscous Burgers equation in unbounded domainJuan Limaco0Haroldo Rodrigues Clark1L. A. Medeiros2Universidade Federal Fluminense, Niteroi-RJ, BrazilUniversidade Federal Fluminense, Niteroi-RJ, BrazilUFRJ, Rio de Janeiro, BrasilIn this paper we investigate the existence and uniqueness of global solutions, and a rate stability for the energy related with a Cauchy problem to the viscous Burgers equation in unbounded domain $\mathbb{R}\times(0,\infty)$. Some aspects associated with a Cauchy problem are presented in order to employ the approximations of Faedo-Galerkin in whole real line $\mathbb{R}$. This becomes possible due to the introduction of weight Sobolev spaces which allow us to use arguments of compactness in the Sobolev spaces.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=478
spellingShingle Juan Limaco
Haroldo Rodrigues Clark
L. A. Medeiros
On the viscous Burgers equation in unbounded domain
Electronic Journal of Qualitative Theory of Differential Equations
title On the viscous Burgers equation in unbounded domain
title_full On the viscous Burgers equation in unbounded domain
title_fullStr On the viscous Burgers equation in unbounded domain
title_full_unstemmed On the viscous Burgers equation in unbounded domain
title_short On the viscous Burgers equation in unbounded domain
title_sort on the viscous burgers equation in unbounded domain
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=478
work_keys_str_mv AT juanlimaco ontheviscousburgersequationinunboundeddomain
AT haroldorodriguesclark ontheviscousburgersequationinunboundeddomain
AT lamedeiros ontheviscousburgersequationinunboundeddomain