Post-Quantum Chebyshev-Type Integral Inequalities for Synchronous Functions

In this paper, we apply <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></seman...

Full description

Bibliographic Details
Main Authors: Nuttapong Arunrat, Keaitsuda Maneeruk Nakprasit, Kamsing Nonlaopon, Praveen Agarwal, Sotiris K. Ntouyas
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/3/468
_version_ 1797486336337248256
author Nuttapong Arunrat
Keaitsuda Maneeruk Nakprasit
Kamsing Nonlaopon
Praveen Agarwal
Sotiris K. Ntouyas
author_facet Nuttapong Arunrat
Keaitsuda Maneeruk Nakprasit
Kamsing Nonlaopon
Praveen Agarwal
Sotiris K. Ntouyas
author_sort Nuttapong Arunrat
collection DOAJ
description In this paper, we apply <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-calculus to establish some new Chebyshev-type integral inequalities for synchronous functions. In particular, we generalize results of quantum Chebyshev-type integral inequalities by using <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-integral. By taking <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>→</mo><mn>1</mn></mrow></semantics></math></inline-formula>, our results reduce to classical results on Chebyshev-type inequalities for synchronous functions. Furthermore, we consider their relevance with other related known results.
first_indexed 2024-03-09T23:31:44Z
format Article
id doaj.art-f74502487bd2415ca73b82f3bd9b9290
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T23:31:44Z
publishDate 2022-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-f74502487bd2415ca73b82f3bd9b92902023-11-23T17:08:00ZengMDPI AGMathematics2227-73902022-01-0110346810.3390/math10030468Post-Quantum Chebyshev-Type Integral Inequalities for Synchronous FunctionsNuttapong Arunrat0Keaitsuda Maneeruk Nakprasit1Kamsing Nonlaopon2Praveen Agarwal3Sotiris K. Ntouyas4Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, ThailandDepartment of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, ThailandDepartment of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, ThailandDepartment of Mathematics, Anand International College of Engineering, Jaipur 302029, IndiaDepartment of Mathematics, University of Ioannina, 45110 Ioannina, GreeceIn this paper, we apply <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-calculus to establish some new Chebyshev-type integral inequalities for synchronous functions. In particular, we generalize results of quantum Chebyshev-type integral inequalities by using <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-integral. By taking <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>→</mo><mn>1</mn></mrow></semantics></math></inline-formula>, our results reduce to classical results on Chebyshev-type inequalities for synchronous functions. Furthermore, we consider their relevance with other related known results.https://www.mdpi.com/2227-7390/10/3/468Chebyshev-type inequalitiessynchronous (asynchronous) functions(<i>p</i>,<i>q</i>)-calculus(<i>p</i>,<i>q</i>)-derivative(<i>p</i>,<i>q</i>)-integral
spellingShingle Nuttapong Arunrat
Keaitsuda Maneeruk Nakprasit
Kamsing Nonlaopon
Praveen Agarwal
Sotiris K. Ntouyas
Post-Quantum Chebyshev-Type Integral Inequalities for Synchronous Functions
Mathematics
Chebyshev-type inequalities
synchronous (asynchronous) functions
(<i>p</i>,<i>q</i>)-calculus
(<i>p</i>,<i>q</i>)-derivative
(<i>p</i>,<i>q</i>)-integral
title Post-Quantum Chebyshev-Type Integral Inequalities for Synchronous Functions
title_full Post-Quantum Chebyshev-Type Integral Inequalities for Synchronous Functions
title_fullStr Post-Quantum Chebyshev-Type Integral Inequalities for Synchronous Functions
title_full_unstemmed Post-Quantum Chebyshev-Type Integral Inequalities for Synchronous Functions
title_short Post-Quantum Chebyshev-Type Integral Inequalities for Synchronous Functions
title_sort post quantum chebyshev type integral inequalities for synchronous functions
topic Chebyshev-type inequalities
synchronous (asynchronous) functions
(<i>p</i>,<i>q</i>)-calculus
(<i>p</i>,<i>q</i>)-derivative
(<i>p</i>,<i>q</i>)-integral
url https://www.mdpi.com/2227-7390/10/3/468
work_keys_str_mv AT nuttapongarunrat postquantumchebyshevtypeintegralinequalitiesforsynchronousfunctions
AT keaitsudamaneeruknakprasit postquantumchebyshevtypeintegralinequalitiesforsynchronousfunctions
AT kamsingnonlaopon postquantumchebyshevtypeintegralinequalitiesforsynchronousfunctions
AT praveenagarwal postquantumchebyshevtypeintegralinequalitiesforsynchronousfunctions
AT sotiriskntouyas postquantumchebyshevtypeintegralinequalitiesforsynchronousfunctions