The Socio-Moral Image Database (SMID): A novel stimulus set for the study of social, moral and affective processes.

A major obstacle for the design of rigorous, reproducible studies in moral psychology is the lack of suitable stimulus sets. Here, we present the Socio-Moral Image Database (SMID), the largest standardized moral stimulus set assembled to date, containing 2,941 freely available photographic images, r...

Full description

Bibliographic Details
Main Authors: Damien L Crone, Stefan Bode, Carsten Murawski, Simon M Laham
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2018-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC5783374?pdf=render
Description
Summary:A major obstacle for the design of rigorous, reproducible studies in moral psychology is the lack of suitable stimulus sets. Here, we present the Socio-Moral Image Database (SMID), the largest standardized moral stimulus set assembled to date, containing 2,941 freely available photographic images, representing a wide range of morally (and affectively) positive, negative and neutral content. The SMID was validated with over 820,525 individual judgments from 2,716 participants, with normative ratings currently available for all images on affective valence and arousal, moral wrongness, and relevance to each of the five moral values posited by Moral Foundations Theory. We present a thorough analysis of the SMID regarding (1) inter-rater consensus, (2) rating precision, and (3) breadth and variability of moral content. Additionally, we provide recommendations for use aimed at efficient study design and reproducibility, and outline planned extensions to the database. We anticipate that the SMID will serve as a useful resource for psychological, neuroscientific and computational (e.g., natural language processing or computer vision) investigations of social, moral and affective processes. The SMID images, along with associated normative data and additional resources are available at https://osf.io/2rqad/.
ISSN:1932-6203