Aluminum Alloys with the Addition of Reduced Deep-Sea Nodules

An innovative way to utilize deep-sea manganese nodules is described in this paper. The manganese nodules were reduced by aluminothermy and subsequently added into aluminum as a mixture of alloying elements in their natural ratio. The microstructure and properties of aluminum alloys containing 1.2,...

Full description

Bibliographic Details
Main Authors: Alena Michalcová, Matouš Orlíček, Pavel Novák
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/11/3/421
Description
Summary:An innovative way to utilize deep-sea manganese nodules is described in this paper. The manganese nodules were reduced by aluminothermy and subsequently added into aluminum as a mixture of alloying elements in their natural ratio. The microstructure and properties of aluminum alloys containing 1.2, 7.7, and 9.7 wt % of reduced nodules were studied. The alloys were formed by Al matrix and minor amounts of Al<sub>6</sub>(Fe,Mn) and Al<sub>11</sub>Fe<sub>7</sub> intermetallic phases. The alloys containing a higher amount of reduced nodules are characterized by very good thermal stability. The obtained alloys were studied by X-ray diffraction, their microstructure was observed by scanning electron microscopy, and their local chemical composition was analyzed by energy dispersive spectrometer. The hardness of the samples was measured on the initial materials and after long-term annealing. Based on the obtained results, the aluminum alloys, with the addition of reduced deep-sea nodules, can serve as precursors for processing, e.g., by rapid solidification or hot working methods.
ISSN:2075-4701