Three-Dimensional Printing Parameter Optimization for Salmon Gelatin Gels Using Artificial Neural Networks and Response Surface Methodology: Influence on Physicochemical and Digestibility Properties

This study aimed to optimize the 3D printing parameters of salmon gelatin gels (SGG) using artificial neural networks with the genetic algorithm (ANN-GA) and response surface methodology (RSM). In addition, the influence of the optimal parameters obtained using the two different methodologies was ev...

Full description

Bibliographic Details
Main Authors: Nailín Carvajal-Mena, Gipsy Tabilo-Munizaga, Marleny D. A. Saldaña, Mario Pérez-Won, Carolina Herrera-Lavados, Roberto Lemus-Mondaca, Luis Moreno-Osorio
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:Gels
Subjects:
Online Access:https://www.mdpi.com/2310-2861/9/9/766
_version_ 1797579986401492992
author Nailín Carvajal-Mena
Gipsy Tabilo-Munizaga
Marleny D. A. Saldaña
Mario Pérez-Won
Carolina Herrera-Lavados
Roberto Lemus-Mondaca
Luis Moreno-Osorio
author_facet Nailín Carvajal-Mena
Gipsy Tabilo-Munizaga
Marleny D. A. Saldaña
Mario Pérez-Won
Carolina Herrera-Lavados
Roberto Lemus-Mondaca
Luis Moreno-Osorio
author_sort Nailín Carvajal-Mena
collection DOAJ
description This study aimed to optimize the 3D printing parameters of salmon gelatin gels (SGG) using artificial neural networks with the genetic algorithm (ANN-GA) and response surface methodology (RSM). In addition, the influence of the optimal parameters obtained using the two different methodologies was evaluated for the physicochemical and digestibility properties of the printed SGG (PSGG). The ANN-GA had a better fit (R<sup>2</sup> = 99.98%) with the experimental conditions of the 3D printing process than the RSM (R<sup>2</sup> = 93.99%). The extrusion speed was the most influential parameter according to both methodologies. The optimal values of the printing parameters for the SGG were 0.70 mm for the nozzle diameter, 0.5 mm for the nozzle height, and 24 mm/s for the extrusion speed. Gel thermal properties showed that the optimal 3D printing conditions affected denaturation temperature and enthalpy, improving digestibility from 46.93% (SGG) to 51.52% (PSGG). The secondary gel structures showed that the β-turn structure was the most resistant to enzymatic hydrolysis, while the intermolecular β-sheet was the most labile. This study validated two optimization methodologies to achieve optimal 3D printing parameters of salmon gelatin gels, with improved physicochemical and digestibility properties for use as transporters to incorporate high value nutrients to the body.
first_indexed 2024-03-10T22:43:54Z
format Article
id doaj.art-f7669a9d784642069dc5f96146d077a8
institution Directory Open Access Journal
issn 2310-2861
language English
last_indexed 2024-03-10T22:43:54Z
publishDate 2023-09-01
publisher MDPI AG
record_format Article
series Gels
spelling doaj.art-f7669a9d784642069dc5f96146d077a82023-11-19T10:51:31ZengMDPI AGGels2310-28612023-09-019976610.3390/gels9090766Three-Dimensional Printing Parameter Optimization for Salmon Gelatin Gels Using Artificial Neural Networks and Response Surface Methodology: Influence on Physicochemical and Digestibility PropertiesNailín Carvajal-Mena0Gipsy Tabilo-Munizaga1Marleny D. A. Saldaña2Mario Pérez-Won3Carolina Herrera-Lavados4Roberto Lemus-Mondaca5Luis Moreno-Osorio6Department of Food Engineering, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillán 3780000, ChileDepartment of Food Engineering, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillán 3780000, ChileDepartment of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, CanadaDepartment of Food Engineering, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillán 3780000, ChileDepartment of Food Engineering, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillán 3780000, ChileDepartment of Food Science and Chemical Technology, Universidad de Chile, Santos Dumont 964, Santiago 8330015, ChileDepartment of Basic Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillán 3780000, ChileThis study aimed to optimize the 3D printing parameters of salmon gelatin gels (SGG) using artificial neural networks with the genetic algorithm (ANN-GA) and response surface methodology (RSM). In addition, the influence of the optimal parameters obtained using the two different methodologies was evaluated for the physicochemical and digestibility properties of the printed SGG (PSGG). The ANN-GA had a better fit (R<sup>2</sup> = 99.98%) with the experimental conditions of the 3D printing process than the RSM (R<sup>2</sup> = 93.99%). The extrusion speed was the most influential parameter according to both methodologies. The optimal values of the printing parameters for the SGG were 0.70 mm for the nozzle diameter, 0.5 mm for the nozzle height, and 24 mm/s for the extrusion speed. Gel thermal properties showed that the optimal 3D printing conditions affected denaturation temperature and enthalpy, improving digestibility from 46.93% (SGG) to 51.52% (PSGG). The secondary gel structures showed that the β-turn structure was the most resistant to enzymatic hydrolysis, while the intermolecular β-sheet was the most labile. This study validated two optimization methodologies to achieve optimal 3D printing parameters of salmon gelatin gels, with improved physicochemical and digestibility properties for use as transporters to incorporate high value nutrients to the body.https://www.mdpi.com/2310-2861/9/9/766salmon gelatin3D printingdimensional stabilityartificial neural networksecondary structuredigestibility
spellingShingle Nailín Carvajal-Mena
Gipsy Tabilo-Munizaga
Marleny D. A. Saldaña
Mario Pérez-Won
Carolina Herrera-Lavados
Roberto Lemus-Mondaca
Luis Moreno-Osorio
Three-Dimensional Printing Parameter Optimization for Salmon Gelatin Gels Using Artificial Neural Networks and Response Surface Methodology: Influence on Physicochemical and Digestibility Properties
Gels
salmon gelatin
3D printing
dimensional stability
artificial neural network
secondary structure
digestibility
title Three-Dimensional Printing Parameter Optimization for Salmon Gelatin Gels Using Artificial Neural Networks and Response Surface Methodology: Influence on Physicochemical and Digestibility Properties
title_full Three-Dimensional Printing Parameter Optimization for Salmon Gelatin Gels Using Artificial Neural Networks and Response Surface Methodology: Influence on Physicochemical and Digestibility Properties
title_fullStr Three-Dimensional Printing Parameter Optimization for Salmon Gelatin Gels Using Artificial Neural Networks and Response Surface Methodology: Influence on Physicochemical and Digestibility Properties
title_full_unstemmed Three-Dimensional Printing Parameter Optimization for Salmon Gelatin Gels Using Artificial Neural Networks and Response Surface Methodology: Influence on Physicochemical and Digestibility Properties
title_short Three-Dimensional Printing Parameter Optimization for Salmon Gelatin Gels Using Artificial Neural Networks and Response Surface Methodology: Influence on Physicochemical and Digestibility Properties
title_sort three dimensional printing parameter optimization for salmon gelatin gels using artificial neural networks and response surface methodology influence on physicochemical and digestibility properties
topic salmon gelatin
3D printing
dimensional stability
artificial neural network
secondary structure
digestibility
url https://www.mdpi.com/2310-2861/9/9/766
work_keys_str_mv AT nailincarvajalmena threedimensionalprintingparameteroptimizationforsalmongelatingelsusingartificialneuralnetworksandresponsesurfacemethodologyinfluenceonphysicochemicalanddigestibilityproperties
AT gipsytabilomunizaga threedimensionalprintingparameteroptimizationforsalmongelatingelsusingartificialneuralnetworksandresponsesurfacemethodologyinfluenceonphysicochemicalanddigestibilityproperties
AT marlenydasaldana threedimensionalprintingparameteroptimizationforsalmongelatingelsusingartificialneuralnetworksandresponsesurfacemethodologyinfluenceonphysicochemicalanddigestibilityproperties
AT marioperezwon threedimensionalprintingparameteroptimizationforsalmongelatingelsusingartificialneuralnetworksandresponsesurfacemethodologyinfluenceonphysicochemicalanddigestibilityproperties
AT carolinaherreralavados threedimensionalprintingparameteroptimizationforsalmongelatingelsusingartificialneuralnetworksandresponsesurfacemethodologyinfluenceonphysicochemicalanddigestibilityproperties
AT robertolemusmondaca threedimensionalprintingparameteroptimizationforsalmongelatingelsusingartificialneuralnetworksandresponsesurfacemethodologyinfluenceonphysicochemicalanddigestibilityproperties
AT luismorenoosorio threedimensionalprintingparameteroptimizationforsalmongelatingelsusingartificialneuralnetworksandresponsesurfacemethodologyinfluenceonphysicochemicalanddigestibilityproperties